IDEAS home Printed from https://ideas.repec.org/a/eee/infome/v9y2015i1p208-225.html
   My bibliography  Save this article

Visualizing information science: Author direct citation analysis in China and around the world

Author

Listed:
  • Yang, Siluo
  • Wang, Feifei

Abstract

Author direct citation analysis (ADCA, also called inter-citation or cross citation) is a new feasible and applicable technique for exploring knowledge communication and discovering scientific structure. This study explored ADCA among prolific, highly cited, and core authors in information science in China and around the world. The results revealed the following. (1) The datasets in China and around the world cover overlapping, but also unique topics. Research subjects on information science around the world can be divided into three categories and 10 clusters; meanwhile, that in China can be divided into three categories and 9 clusters. Chinese scholars who are mostly involved in cross subjects and multi-fields are not as specialized and profound as foreign scholars. An obvious imbalance exists in the evolution of discipline structure around the world, indicating the necessity of a synchronous promotion of research specialty and cross comprehensiveness. Chinese scholars concentrate more on topics such as competitive intelligence, information resource management, and information retrieval, and they focus less on information security and user analysis. (2) Knowledge communication between active authors is stronger than the knowledge flow from highly influential authors to active authors around the world; meanwhile, Chinese researchers tend to adopt the knowledge of authoritative literature. The knowledge flow through bidirectional direct citation is related to mutual knowledge communication. Authoritative scholars are produced when prolific authors cite highly cited authors. The level of mutual recognition among Chinese scholars has not reached that among foreign scholars; in the former, less bidirectional flow of knowledge is involved, and unidirectional flow is limited to geographical proximity, cooperation, or teacher–student relationship. (3) In contrast to traditional author co-citation analysis (ACA), ADCA pays more attention to the mutual interaction among currently active scholars and to mainly showing the current research focus.

Suggested Citation

  • Yang, Siluo & Wang, Feifei, 2015. "Visualizing information science: Author direct citation analysis in China and around the world," Journal of Informetrics, Elsevier, vol. 9(1), pages 208-225.
  • Handle: RePEc:eee:infome:v:9:y:2015:i:1:p:208-225
    DOI: 10.1016/j.joi.2015.01.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1751157715000024
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.joi.2015.01.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Andreas Strotmann & Dangzhi Zhao, 2012. "Author name disambiguation: What difference does it make in author-based citation analysis?," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 63(9), pages 1820-1833, September.
    2. Ma, Ruimin, 2012. "Author bibliographic coupling analysis: A test based on a Chinese academic database," Journal of Informetrics, Elsevier, vol. 6(4), pages 532-542.
    3. Dangzhi Zhao & Andreas Strotmann, 2014. "The knowledge base and research front of information science 2006–2010: An author cocitation and bibliographic coupling analysis," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 65(5), pages 995-1006, May.
    4. Richard Klavans & Kevin W. Boyack, 2011. "Using global mapping to create more accurate document‐level maps of research fields," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 62(1), pages 1-18, January.
    5. Erjia Yan & Ying Ding, 2012. "Scholarly network similarities: How bibliographic coupling networks, citation networks, cocitation networks, topical networks, coauthorship networks, and coword networks relate to each other," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 63(7), pages 1313-1326, July.
    6. Erjia Yan & Ying Ding, 2012. "Scholarly network similarities: How bibliographic coupling networks, citation networks, cocitation networks, topical networks, coauthorship networks, and coword networks relate to each other," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 63(7), pages 1313-1326, July.
    7. Richard Klavans & Kevin W. Boyack, 2011. "Using global mapping to create more accurate document-level maps of research fields," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 62(1), pages 1-18, January.
    8. Henry Small, 1973. "Co‐citation in the scientific literature: A new measure of the relationship between two documents," Journal of the American Society for Information Science, Association for Information Science & Technology, vol. 24(4), pages 265-269, July.
    9. Rolf Ketzler & Klaus F. Zimmermann, 2013. "A citation-analysis of economic research institutes," Scientometrics, Springer;Akadémiai Kiadó, vol. 95(3), pages 1095-1112, June.
    10. Kevin W. Boyack & Richard Klavans, 2010. "Co-citation analysis, bibliographic coupling, and direct citation: Which citation approach represents the research front most accurately?," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 61(12), pages 2389-2404, December.
    11. Lin Zhang & Frizo Janssens & Liming Liang & Wolfgang Glänzel, 2010. "Journal cross-citation analysis for validation and improvement of journal-based subject classification in bibliometric research," Scientometrics, Springer;Akadémiai Kiadó, vol. 82(3), pages 687-706, March.
    12. Björn Hammarfelt, 2011. "Citation analysis on the micro level: The example of Walter Benjamin's Illuminations," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 62(5), pages 819-830, May.
    13. Jarneving, Bo, 2007. "Bibliographic coupling and its application to research-front and other core documents," Journal of Informetrics, Elsevier, vol. 1(4), pages 287-307.
    14. Björn Hammarfelt, 2011. "Citation analysis on the micro level: The example of Walter Benjamin's Illuminations," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 62(5), pages 819-830, May.
    15. Norman Kaplan, 1965. "The norms of citation behavior: Prolegomena to the footnote," American Documentation, Wiley Blackwell, vol. 16(3), pages 179-184, July.
    16. Jeong, Yoo Kyung & Song, Min & Ding, Ying, 2014. "Content-based author co-citation analysis," Journal of Informetrics, Elsevier, vol. 8(1), pages 197-211.
    17. Andreas Strotmann & Dangzhi Zhao, 2012. "Author name disambiguation: What difference does it make in author‐based citation analysis?," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 63(9), pages 1820-1833, September.
    18. Kevin W. Boyack & Richard Klavans, 2010. "Co‐citation analysis, bibliographic coupling, and direct citation: Which citation approach represents the research front most accurately?," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 61(12), pages 2389-2404, December.
    19. Feifei Wang & Junping Qiu & Houqiang Yu, 2012. "Research on the cross-citation relationship of core authors in scientometrics," Scientometrics, Springer;Akadémiai Kiadó, vol. 91(3), pages 1011-1033, June.
    20. Katherine W. McCain, 1990. "Mapping authors in intellectual space: A technical overview," Journal of the American Society for Information Science, Association for Information Science & Technology, vol. 41(6), pages 433-443, September.
    21. Naoki Shibata & Yuya Kajikawa & Yoshiyuki Takeda & Katsumori Matsushima, 2009. "Comparative study on methods of detecting research fronts using different types of citation," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 60(3), pages 571-580, March.
    22. Ying Ding & Guo Zhang & Tamy Chambers & Min Song & Xiaolong Wang & Chengxiang Zhai, 2014. "Content-based citation analysis: The next generation of citation analysis," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 65(9), pages 1820-1833, September.
    23. Eom, Sean, 2008. "All author cocitation analysis and first author cocitation analysis: A comparative empirical investigation," Journal of Informetrics, Elsevier, vol. 2(1), pages 53-64.
    24. Howard D. White & Katherine W. McCain, 1998. "Visualizing a discipline: An author co‐citation analysis of information science, 1972–1995," Journal of the American Society for Information Science, Association for Information Science & Technology, vol. 49(4), pages 327-355.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lyu, Haihua & Bu, Yi & Zhao, Zhenyue & Zhang, Jiarong & Li, Jiang, 2022. "Citation bias in measuring knowledge flow: Evidence from the web of science at the discipline level," Journal of Informetrics, Elsevier, vol. 16(4).
    2. Meijun Liu & Xiao Hu & Jiang Li, 2018. "Knowledge flow in China’s humanities and social sciences," Quality & Quantity: International Journal of Methodology, Springer, vol. 52(2), pages 607-626, March.
    3. Ruimin Ma & Erjia Yan, 2016. "Uncovering inter-specialty knowledge communication using author citation networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 109(2), pages 839-854, November.
    4. Yang, Siluo & Han, Ruizhen & Wolfram, Dietmar & Zhao, Yuehua, 2016. "Visualizing the intellectual structure of information science (2006–2015): Introducing author keyword coupling analysis," Journal of Informetrics, Elsevier, vol. 10(1), pages 132-150.
    5. Pin Li & Guoli Yang & Chuanqi Wang, 2019. "Visual topical analysis of library and information science," Scientometrics, Springer;Akadémiai Kiadó, vol. 121(3), pages 1753-1791, December.
    6. Jianhua Hou & Xiucai Yang & Chaomei Chen, 2018. "Emerging trends and new developments in information science: a document co-citation analysis (2009–2016)," Scientometrics, Springer;Akadémiai Kiadó, vol. 115(2), pages 869-892, May.
    7. Mehdi Amirkhani & Igor Martek & Mark B. Luther, 2021. "Mapping Research Trends in Residential Construction Retrofitting: A Scientometric Literature Review," Energies, MDPI, vol. 14(19), pages 1-18, September.
    8. Saeed-Ul Hassan & Iqra Safder & Anam Akram & Faisal Kamiran, 2018. "A novel machine-learning approach to measuring scientific knowledge flows using citation context analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 116(2), pages 973-996, August.
    9. Wang, Feifei & Dong, Jiaxin & Lu, Wanzhao & Xu, Shuo, 2023. "Collaboration prediction based on multilayer all-author tripartite citation networks: A case study of gene editing," Journal of Informetrics, Elsevier, vol. 17(1).
    10. Wang, Feifei & Jia, Chenran & Wang, Xiaohan & Liu, Junwan & Xu, Shuo & Liu, Yang & Yang, Chenyuyan, 2019. "Exploring all-author tripartite citation networks: A case study of gene editing," Journal of Informetrics, Elsevier, vol. 13(3), pages 856-873.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Siluo & Han, Ruizhen & Wolfram, Dietmar & Zhao, Yuehua, 2016. "Visualizing the intellectual structure of information science (2006–2015): Introducing author keyword coupling analysis," Journal of Informetrics, Elsevier, vol. 10(1), pages 132-150.
    2. Song Yanhui & Wu Lijuan & Qiu Junping, 2021. "A comparative study of first and all-author bibliographic coupling analysis based on Scientometrics," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(2), pages 1125-1147, February.
    3. Wang, Feifei & Jia, Chenran & Wang, Xiaohan & Liu, Junwan & Xu, Shuo & Liu, Yang & Yang, Chenyuyan, 2019. "Exploring all-author tripartite citation networks: A case study of gene editing," Journal of Informetrics, Elsevier, vol. 13(3), pages 856-873.
    4. Shuo Xu & Liyuan Hao & Xin An & Hongshen Pang & Ting Li, 2020. "Review on emerging research topics with key-route main path analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 122(1), pages 607-624, January.
    5. Bu, Yi & Ni, Shaokang & Huang, Win-bin, 2017. "Combining multiple scholarly relationships with author cocitation analysis: A preliminary exploration on improving knowledge domain mappings," Journal of Informetrics, Elsevier, vol. 11(3), pages 810-822.
    6. Yu-Wei Chang & Mu-Hsuan Huang & Chiao-Wen Lin, 2015. "Evolution of research subjects in library and information science based on keyword, bibliographical coupling, and co-citation analyses," Scientometrics, Springer;Akadémiai Kiadó, vol. 105(3), pages 2071-2087, December.
    7. Jun-Ping Qiu & Ke Dong & Hou-Qiang Yu, 2014. "Comparative study on structure and correlation among author co-occurrence networks in bibliometrics," Scientometrics, Springer;Akadémiai Kiadó, vol. 101(2), pages 1345-1360, November.
    8. Prathap, Gangan & Ujum, Ephrance Abu & Kumar, Sameer & Ratnavelu, Kuru, 2021. "Scoring the resourcefulness of researchers using bibliographic coupling patterns," Journal of Informetrics, Elsevier, vol. 15(3).
    9. Kim, Ha Jin & Jeong, Yoo Kyung & Song, Min, 2016. "Content- and proximity-based author co-citation analysis using citation sentences," Journal of Informetrics, Elsevier, vol. 10(4), pages 954-966.
    10. Yan, Erjia & Ding, Ying & Milojević, Staša & Sugimoto, Cassidy R., 2012. "Topics in dynamic research communities: An exploratory study for the field of information retrieval," Journal of Informetrics, Elsevier, vol. 6(1), pages 140-153.
    11. Guan-Can Yang & Gang Li & Chun-Ya Li & Yun-Hua Zhao & Jing Zhang & Tong Liu & Dar-Zen Chen & Mu-Hsuan Huang, 2015. "Using the comprehensive patent citation network (CPC) to evaluate patent value," Scientometrics, Springer;Akadémiai Kiadó, vol. 105(3), pages 1319-1346, December.
    12. Dorsa Alipour & Hussein Dia, 2023. "A Systematic Review of the Role of Land Use, Transport, and Energy-Environment Integration in Shaping Sustainable Cities," Sustainability, MDPI, vol. 15(8), pages 1-29, April.
    13. Liu, Xiang & Jiang, Tingting & Ma, Feicheng, 2013. "Collective dynamics in knowledge networks: Emerging trends analysis," Journal of Informetrics, Elsevier, vol. 7(2), pages 425-438.
    14. Matthias Held & Grit Laudel & Jochen Gläser, 2021. "Challenges to the validity of topic reconstruction," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(5), pages 4511-4536, May.
    15. Kraker, Peter & Schlögl, Christian & Jack, Kris & Lindstaedt, Stefanie, 2015. "Visualization of co-readership patterns from an online reference management system," Journal of Informetrics, Elsevier, vol. 9(1), pages 169-182.
    16. Ali Gazni & Fereshteh Didegah, 2016. "The relationship between authors’ bibliographic coupling and citation exchange: analyzing disciplinary differences," Scientometrics, Springer;Akadémiai Kiadó, vol. 107(2), pages 609-626, May.
    17. Rons, Nadine, 2018. "Bibliometric approximation of a scientific specialty by combining key sources, title words, authors and references," Journal of Informetrics, Elsevier, vol. 12(1), pages 113-132.
    18. García-Lillo, Francisco & Seva-Larrosa, Pedro & Sánchez-García, Eduardo, 2024. "On the basis of research on ‘green’ in the disciplines of management and business," Journal of Business Research, Elsevier, vol. 172(C).
    19. Pournader, Mehrdokht & Ghaderi, Hadi & Hassanzadegan, Amir & Fahimnia, Behnam, 2021. "Artificial intelligence applications in supply chain management," International Journal of Production Economics, Elsevier, vol. 241(C).
    20. Jung, Sukhwan & Yoon, Wan Chul, 2020. "An alternative topic model based on Common Interest Authors for topic evolution analysis," Journal of Informetrics, Elsevier, vol. 14(3).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:infome:v:9:y:2015:i:1:p:208-225. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/joi .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.