IDEAS home Printed from https://ideas.repec.org/a/eee/infome/v11y2017i3p810-822.html
   My bibliography  Save this article

Combining multiple scholarly relationships with author cocitation analysis: A preliminary exploration on improving knowledge domain mappings

Author

Listed:
  • Bu, Yi
  • Ni, Shaokang
  • Huang, Win-bin

Abstract

Author cocitation analysis (ACA) is a branch of bibliometrics and knowledge representation that aims to map knowledge domains. However, ACA has been criticized because count-based measurement is too simple, and resulting maps are insufficiently informative. Since different scholarly relationships, e.g., coauthorship and author bibliographic coupling relationships, can extract out different relationships among authors in various perspectives, combining them with ACA for constructing knowledge domain mappings is our major purpose. The proposed method constructs the hybrid matrix from all relationships in four steps: relationship normalization, calculating the similarity between scholarly relationships, calculating adjustment parameters, and constructing hybrid relationships. The important parameters for integrating these matrices are calculated according to the distance in the hyperspace transformed from the similarity among the scholarly relationships by exploratory factor analysis. Compared with ACA, the results of the proposed method show: (1) More sub-fields in the given discipline can be identified when combining other scholarly relationships; (2) The more scholarly relationships added into ACA, the more details in terms of research area the method will find; (3) Good visualization in clustering is depicted when we combine other scholarly relationships. As a result, the proposed method offers a good choice to understand researchers and to map knowledge domains in a study field for integrating more scholarly relationships at the same time.

Suggested Citation

  • Bu, Yi & Ni, Shaokang & Huang, Win-bin, 2017. "Combining multiple scholarly relationships with author cocitation analysis: A preliminary exploration on improving knowledge domain mappings," Journal of Informetrics, Elsevier, vol. 11(3), pages 810-822.
  • Handle: RePEc:eee:infome:v:11:y:2017:i:3:p:810-822
    DOI: 10.1016/j.joi.2017.06.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1751157716303674
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.joi.2017.06.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Henry Kaiser, 1958. "The varimax criterion for analytic rotation in factor analysis," Psychometrika, Springer;The Psychometric Society, vol. 23(3), pages 187-200, September.
    2. Dangzhi Zhao & Andreas Strotmann, 2014. "The knowledge base and research front of information science 2006–2010: An author cocitation and bibliographic coupling analysis," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 65(5), pages 995-1006, May.
    3. Erjia Yan & Ying Ding, 2012. "Scholarly network similarities: How bibliographic coupling networks, citation networks, cocitation networks, topical networks, coauthorship networks, and coword networks relate to each other," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 63(7), pages 1313-1326, July.
    4. Erjia Yan & Ying Ding, 2012. "Scholarly network similarities: How bibliographic coupling networks, citation networks, cocitation networks, topical networks, coauthorship networks, and coword networks relate to each other," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 63(7), pages 1313-1326, July.
    5. Yi Bu & Tian-yi Liu & Win-bin Huang, 2016. "MACA: a modified author co-citation analysis method combined with general descriptive metadata of citations," Scientometrics, Springer;Akadémiai Kiadó, vol. 108(1), pages 143-166, July.
    6. Michel Zitt & Elise Bassecoulard & Yoshiko Okubo, 2000. "Shadows of the Past in International Cooperation: Collaboration Profiles of the Top Five Producers of Science," Scientometrics, Springer;Akadémiai Kiadó, vol. 47(3), pages 627-657, March.
    7. Kevin W. Boyack & Richard Klavans, 2010. "Co-citation analysis, bibliographic coupling, and direct citation: Which citation approach represents the research front most accurately?," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 61(12), pages 2389-2404, December.
    8. Liang-Chu Chen & Yen-Hsuan Lien, 2011. "Using author co-citation analysis to examine the intellectual structure of e-learning: A MIS perspective," Scientometrics, Springer;Akadémiai Kiadó, vol. 89(3), pages 867-886, December.
    9. Jeong, Yoo Kyung & Song, Min & Ding, Ying, 2014. "Content-based author co-citation analysis," Journal of Informetrics, Elsevier, vol. 8(1), pages 197-211.
    10. Kim, Ha Jin & Jeong, Yoo Kyung & Song, Min, 2016. "Content- and proximity-based author co-citation analysis using citation sentences," Journal of Informetrics, Elsevier, vol. 10(4), pages 954-966.
    11. Staša Milojević, 2010. "Modes of collaboration in modern science: Beyond power laws and preferential attachment," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 61(7), pages 1410-1423, July.
    12. Olle Persson, 2001. "All author citations versus first author citations," Scientometrics, Springer;Akadémiai Kiadó, vol. 50(2), pages 339-344, February.
    13. M. M. Kessler, 1963. "Bibliographic coupling between scientific papers," American Documentation, Wiley Blackwell, vol. 14(1), pages 10-25, January.
    14. Kevin W. Boyack & Richard Klavans, 2010. "Co‐citation analysis, bibliographic coupling, and direct citation: Which citation approach represents the research front most accurately?," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 61(12), pages 2389-2404, December.
    15. Zhao, Dangzhi & Strotmann, Andreas, 2008. "Comparing all-author and first-author co-citation analyses of information science," Journal of Informetrics, Elsevier, vol. 2(3), pages 229-239.
    16. Katherine W. McCain, 1990. "Mapping authors in intellectual space: A technical overview," Journal of the American Society for Information Science, Association for Information Science & Technology, vol. 41(6), pages 433-443, September.
    17. Leo Egghe & Loet Leydesdorff, 2009. "The relation between Pearson's correlation coefficient r and Salton's cosine measure," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 60(5), pages 1027-1036, May.
    18. Howard D. White & Katherine W. McCain, 1998. "Visualizing a discipline: An author co‐citation analysis of information science, 1972–1995," Journal of the American Society for Information Science, Association for Information Science & Technology, vol. 49(4), pages 327-355.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Samreen Ayaz & Nayyer Masood & Muhammad Arshad Islam, 2018. "Predicting scientific impact based on h-index," Scientometrics, Springer;Akadémiai Kiadó, vol. 114(3), pages 993-1010, March.
    2. Yong Huang & Yi Bu & Ying Ding & Wei Lu, 2018. "Number versus structure: towards citing cascades," Scientometrics, Springer;Akadémiai Kiadó, vol. 117(3), pages 2177-2193, December.
    3. Yi Bu & Binglu Wang & Win-bin Huang & Shangkun Che & Yong Huang, 2018. "Using the appearance of citations in full text on author co-citation analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 116(1), pages 275-289, July.
    4. Ba, Zhichao & Liang, Zhentao, 2021. "A novel approach to measuring science-technology linkage: From the perspective of knowledge network coupling," Journal of Informetrics, Elsevier, vol. 15(3).
    5. Zaida Chinchilla-Rodríguez & Yi Bu & Nicolás Robinson-García & Cassidy R. Sugimoto, 2021. "An empirical review of the different variants of the probabilistic affinity index as applied to scientific collaboration," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(2), pages 1775-1795, February.
    6. Yun, Jinhyuk & Ahn, Sejung & Lee, June Young, 2020. "Return to basics: Clustering of scientific literature using structural information," Journal of Informetrics, Elsevier, vol. 14(4).
    7. Lijun Yang & Liangxiu Han & Naxin Liu, 2019. "A new approach to journal co-citation matrix construction based on the number of co-cited articles in journals," Scientometrics, Springer;Akadémiai Kiadó, vol. 120(2), pages 507-517, August.
    8. Prathap, Gangan & Ujum, Ephrance Abu & Kumar, Sameer & Ratnavelu, Kuru, 2021. "Scoring the resourcefulness of researchers using bibliographic coupling patterns," Journal of Informetrics, Elsevier, vol. 15(3).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Song Yanhui & Wu Lijuan & Qiu Junping, 2021. "A comparative study of first and all-author bibliographic coupling analysis based on Scientometrics," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(2), pages 1125-1147, February.
    2. Wang, Feifei & Jia, Chenran & Wang, Xiaohan & Liu, Junwan & Xu, Shuo & Liu, Yang & Yang, Chenyuyan, 2019. "Exploring all-author tripartite citation networks: A case study of gene editing," Journal of Informetrics, Elsevier, vol. 13(3), pages 856-873.
    3. Yang, Siluo & Han, Ruizhen & Wolfram, Dietmar & Zhao, Yuehua, 2016. "Visualizing the intellectual structure of information science (2006–2015): Introducing author keyword coupling analysis," Journal of Informetrics, Elsevier, vol. 10(1), pages 132-150.
    4. Jun-Ping Qiu & Ke Dong & Hou-Qiang Yu, 2014. "Comparative study on structure and correlation among author co-occurrence networks in bibliometrics," Scientometrics, Springer;Akadémiai Kiadó, vol. 101(2), pages 1345-1360, November.
    5. Yi Bu & Binglu Wang & Win-bin Huang & Shangkun Che & Yong Huang, 2018. "Using the appearance of citations in full text on author co-citation analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 116(1), pages 275-289, July.
    6. Yang, Siluo & Wang, Feifei, 2015. "Visualizing information science: Author direct citation analysis in China and around the world," Journal of Informetrics, Elsevier, vol. 9(1), pages 208-225.
    7. Yu-Wei Chang & Mu-Hsuan Huang & Chiao-Wen Lin, 2015. "Evolution of research subjects in library and information science based on keyword, bibliographical coupling, and co-citation analyses," Scientometrics, Springer;Akadémiai Kiadó, vol. 105(3), pages 2071-2087, December.
    8. Kraker, Peter & Schlögl, Christian & Jack, Kris & Lindstaedt, Stefanie, 2015. "Visualization of co-readership patterns from an online reference management system," Journal of Informetrics, Elsevier, vol. 9(1), pages 169-182.
    9. Guan-Can Yang & Gang Li & Chun-Ya Li & Yun-Hua Zhao & Jing Zhang & Tong Liu & Dar-Zen Chen & Mu-Hsuan Huang, 2015. "Using the comprehensive patent citation network (CPC) to evaluate patent value," Scientometrics, Springer;Akadémiai Kiadó, vol. 105(3), pages 1319-1346, December.
    10. Dorsa Alipour & Hussein Dia, 2023. "A Systematic Review of the Role of Land Use, Transport, and Energy-Environment Integration in Shaping Sustainable Cities," Sustainability, MDPI, vol. 15(8), pages 1-29, April.
    11. Prathap, Gangan & Ujum, Ephrance Abu & Kumar, Sameer & Ratnavelu, Kuru, 2021. "Scoring the resourcefulness of researchers using bibliographic coupling patterns," Journal of Informetrics, Elsevier, vol. 15(3).
    12. Jeong, Yoo Kyung & Song, Min & Ding, Ying, 2014. "Content-based author co-citation analysis," Journal of Informetrics, Elsevier, vol. 8(1), pages 197-211.
    13. Hervas Oliver,Jose Luis & Gonzalez,Gregorio & Caja,Pedro, 2014. "Clusters and industrial districts: where is the literature going? Identifying emerging sub-fields of research," INGENIO (CSIC-UPV) Working Paper Series 201409, INGENIO (CSIC-UPV).
    14. van der Have, Robert P. & Rubalcaba, Luis, 2016. "Social innovation research: An emerging area of innovation studies?," Research Policy, Elsevier, vol. 45(9), pages 1923-1935.
    15. Yun, Jinhyuk & Ahn, Sejung & Lee, June Young, 2020. "Return to basics: Clustering of scientific literature using structural information," Journal of Informetrics, Elsevier, vol. 14(4).
    16. Muh-Chyun Tang & Yun Jen Cheng & Kuang Hua Chen, 2017. "A longitudinal study of intellectual cohesion in digital humanities using bibliometric analyses," Scientometrics, Springer;Akadémiai Kiadó, vol. 113(2), pages 985-1008, November.
    17. Ding, Ying, 2011. "Community detection: Topological vs. topical," Journal of Informetrics, Elsevier, vol. 5(4), pages 498-514.
    18. Ying Huang & Wolfgang Glänzel & Lin Zhang, 2021. "Tracing the development of mapping knowledge domains," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(7), pages 6201-6224, July.
    19. Perianes-Rodriguez, Antonio & Waltman, Ludo & van Eck, Nees Jan, 2016. "Constructing bibliometric networks: A comparison between full and fractional counting," Journal of Informetrics, Elsevier, vol. 10(4), pages 1178-1195.
    20. Wolfram, Dietmar & Zhao, Yuehua, 2014. "A comparison of journal similarity across six disciplines using citing discipline analysis," Journal of Informetrics, Elsevier, vol. 8(4), pages 840-853.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:infome:v:11:y:2017:i:3:p:810-822. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/joi .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.