IDEAS home Printed from https://ideas.repec.org/a/spr/scient/v125y2020i1d10.1007_s11192-020-03645-9.html
   My bibliography  Save this article

The dynamics of research subfields for library and information science: an investigation based on word bibliographic coupling

Author

Listed:
  • Tsung-Ming Hsiao

    (National Taiwan University)

  • Kuang-hua Chen

    (National Taiwan University)

Abstract

Uncovering research topics, manifesting the relationships, and revealing the structure in a discipline are major and important research issues in library and information science (LIS). To understand the evolution of research subfields in LIS during two periods, 2009 to 2013 and 2014 to 2018, this study proposes and applies a novel method, word bibliographic coupling, to measure the relationships between different feature words extracted from 21,066 research articles published in 44 LIS journals. According to the results of factor analysis, the top 25 subfields are identified for each period. The results show that core research subfields in LIS remain relatively stable, but new subfields replaced old ones due to the change of society or the development of technology. The subfields identified in this study can be further categorized into six main research trends, including Scholarly Communication and Scientometrics, Information Behavior and Information Retrieval, Applications of Technology, Library Services and Management, Health Information and Technology, and Computer Science Techniques. Most subfields related to the same research trend correlated to each other, but the subfields of Library Services and Management scatter over the networks. This study depicts the recent development of research subfields and significant research trends in LIS.

Suggested Citation

  • Tsung-Ming Hsiao & Kuang-hua Chen, 2020. "The dynamics of research subfields for library and information science: an investigation based on word bibliographic coupling," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(1), pages 717-737, October.
  • Handle: RePEc:spr:scient:v:125:y:2020:i:1:d:10.1007_s11192-020-03645-9
    DOI: 10.1007/s11192-020-03645-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11192-020-03645-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11192-020-03645-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ma, Ruimin, 2012. "Author bibliographic coupling analysis: A test based on a Chinese academic database," Journal of Informetrics, Elsevier, vol. 6(4), pages 532-542.
    2. Carlos Olmeda-Gómez & Maria-Antonia Ovalle-Perandones & Antonio Perianes-Rodríguez, 2017. "Co-word analysis and thematic landscapes in Spanish information science literature, 1985–2014," Scientometrics, Springer;Akadémiai Kiadó, vol. 113(1), pages 195-217, October.
    3. A. Abrizah & A. Noorhidawati & A. N. Zainab, 2015. "LIS journals categorization in the Journal Citation Report: a stated preference study," Scientometrics, Springer;Akadémiai Kiadó, vol. 102(2), pages 1083-1099, February.
    4. Yu-Wei Chang & Mu-Hsuan Huang & Chiao-Wen Lin, 2015. "Evolution of research subjects in library and information science based on keyword, bibliographical coupling, and co-citation analyses," Scientometrics, Springer;Akadémiai Kiadó, vol. 105(3), pages 2071-2087, December.
    5. Francis Narin & Mark Carpenter & Nancy C. Berlt, 1972. "Interrelationships of scientific journals," Journal of the American Society for Information Science, Association for Information Science & Technology, vol. 23(5), pages 323-331, September.
    6. Dangzhi Zhao & Andreas Strotmann, 2008. "Information science during the first decade of the web: An enriched author cocitation analysis," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 59(6), pages 916-937, April.
    7. Dangzhi Zhao & Andreas Strotmann, 2014. "The knowledge base and research front of information science 2006–2010: An author cocitation and bibliographic coupling analysis," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 65(5), pages 995-1006, May.
    8. Jianhua Hou & Xiucai Yang & Chaomei Chen, 2018. "Emerging trends and new developments in information science: a document co-citation analysis (2009–2016)," Scientometrics, Springer;Akadémiai Kiadó, vol. 115(2), pages 869-892, May.
    9. Henry Small, 1973. "Co‐citation in the scientific literature: A new measure of the relationship between two documents," Journal of the American Society for Information Science, Association for Information Science & Technology, vol. 24(4), pages 265-269, July.
    10. Dangzhi Zhao & Andreas Strotmann, 2008. "Evolution of research activities and intellectual influences in information science 1996–2005: Introducing author bibliographic‐coupling analysis," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 59(13), pages 2070-2086, November.
    11. Yang, Siluo & Han, Ruizhen & Wolfram, Dietmar & Zhao, Yuehua, 2016. "Visualizing the intellectual structure of information science (2006–2015): Introducing author keyword coupling analysis," Journal of Informetrics, Elsevier, vol. 10(1), pages 132-150.
    12. Mu-hsuan Huang & Wang-Ching Shaw & Chi-Shiou Lin, 2019. "One category, two communities: subfield differences in “Information Science and Library Science” in Journal Citation Reports," Scientometrics, Springer;Akadémiai Kiadó, vol. 119(2), pages 1059-1079, May.
    13. Félix Moya-Anegón & Benjamín Vargas-Quesada & Victor Herrero-Solana & Zaida Chinchilla-Rodríguez & Elena Corera-Álvarez & Francisco J. Munoz-Fernández, 2004. "A new technique for building maps of large scientific domains based on the cocitation of classes and categories," Scientometrics, Springer;Akadémiai Kiadó, vol. 61(1), pages 129-145, September.
    14. Howard D. White & Belver C. Griffith, 1981. "Author cocitation: A literature measure of intellectual structure," Journal of the American Society for Information Science, Association for Information Science & Technology, vol. 32(3), pages 163-171, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiaoguang Wang & Hongyu Wang & Han Huang, 2021. "Evolutionary exploration and comparative analysis of the research topic networks in information disciplines," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(6), pages 4991-5017, June.
    2. A. Velez-Estevez & P. García-Sánchez & J. A. Moral-Munoz & M. J. Cobo, 2022. "Why do papers from international collaborations get more citations? A bibliometric analysis of Library and Information Science papers," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(12), pages 7517-7555, December.
    3. Vicente Safón & Domingo Docampo, 2023. "What are you reading? From core journals to trendy journals in the Library and Information Science (LIS) field," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(5), pages 2777-2801, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pin Li & Guoli Yang & Chuanqi Wang, 2019. "Visual topical analysis of library and information science," Scientometrics, Springer;Akadémiai Kiadó, vol. 121(3), pages 1753-1791, December.
    2. Song Yanhui & Wu Lijuan & Qiu Junping, 2021. "A comparative study of first and all-author bibliographic coupling analysis based on Scientometrics," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(2), pages 1125-1147, February.
    3. Prathap, Gangan & Ujum, Ephrance Abu & Kumar, Sameer & Ratnavelu, Kuru, 2021. "Scoring the resourcefulness of researchers using bibliographic coupling patterns," Journal of Informetrics, Elsevier, vol. 15(3).
    4. Qian, Yue & Liu, Yu & Sheng, Quan Z., 2020. "Understanding hierarchical structural evolution in a scientific discipline: A case study of artificial intelligence," Journal of Informetrics, Elsevier, vol. 14(3).
    5. Jianhua Hou & Xiucai Yang & Chaomei Chen, 2018. "Emerging trends and new developments in information science: a document co-citation analysis (2009–2016)," Scientometrics, Springer;Akadémiai Kiadó, vol. 115(2), pages 869-892, May.
    6. Bo Liu & Wei Song & Qian Sun, 2022. "Status, Trend, and Prospect of Global Farmland Abandonment Research: A Bibliometric Analysis," IJERPH, MDPI, vol. 19(23), pages 1-30, November.
    7. Yu-Wei Chang, 2018. "Examining interdisciplinarity of library and information science (LIS) based on LIS articles contributed by non-LIS authors," Scientometrics, Springer;Akadémiai Kiadó, vol. 116(3), pages 1589-1613, September.
    8. Kim, Ha Jin & Jeong, Yoo Kyung & Song, Min, 2016. "Content- and proximity-based author co-citation analysis using citation sentences," Journal of Informetrics, Elsevier, vol. 10(4), pages 954-966.
    9. Yun, Jinhyuk & Ahn, Sejung & Lee, June Young, 2020. "Return to basics: Clustering of scientific literature using structural information," Journal of Informetrics, Elsevier, vol. 14(4).
    10. Yosuke Miyata & Emi Ishita & Fang Yang & Michimasa Yamamoto & Azusa Iwase & Keiko Kurata, 2020. "Knowledge structure transition in library and information science: topic modeling and visualization," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(1), pages 665-687, October.
    11. Yu-Wei Chang & Mu-Hsuan Huang & Chiao-Wen Lin, 2015. "Evolution of research subjects in library and information science based on keyword, bibliographical coupling, and co-citation analyses," Scientometrics, Springer;Akadémiai Kiadó, vol. 105(3), pages 2071-2087, December.
    12. Ying Huang & Wolfgang Glänzel & Lin Zhang, 2021. "Tracing the development of mapping knowledge domains," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(7), pages 6201-6224, July.
    13. Georg Groh & Christoph Fuchs, 2011. "Multi-modal social networks for modeling scientific fields," Scientometrics, Springer;Akadémiai Kiadó, vol. 89(2), pages 569-590, November.
    14. Wang, Feifei & Jia, Chenran & Wang, Xiaohan & Liu, Junwan & Xu, Shuo & Liu, Yang & Yang, Chenyuyan, 2019. "Exploring all-author tripartite citation networks: A case study of gene editing," Journal of Informetrics, Elsevier, vol. 13(3), pages 856-873.
    15. Ruhao Zhang & Junpeng Yuan, 2022. "Enhanced author bibliographic coupling analysis using semantic and syntactic citation information," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(12), pages 7681-7706, December.
    16. Dangzhi Zhao & Andreas Strotmann, 2020. "Deep and narrow impact: introducing location filtered citation counting," Scientometrics, Springer;Akadémiai Kiadó, vol. 122(1), pages 503-517, January.
    17. Xiaoyao Han, 2020. "Evolution of research topics in LIS between 1996 and 2019: an analysis based on latent Dirichlet allocation topic model," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(3), pages 2561-2595, December.
    18. Shuo Xu & Liyuan Hao & Xin An & Hongshen Pang & Ting Li, 2020. "Review on emerging research topics with key-route main path analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 122(1), pages 607-624, January.
    19. Wang, Xiaoguang & He, Jing & Huang, Han & Wang, Hongyu, 2022. "MatrixSim: A new method for detecting the evolution paths of research topics," Journal of Informetrics, Elsevier, vol. 16(4).
    20. Yang, Siluo & Han, Ruizhen & Wolfram, Dietmar & Zhao, Yuehua, 2016. "Visualizing the intellectual structure of information science (2006–2015): Introducing author keyword coupling analysis," Journal of Informetrics, Elsevier, vol. 10(1), pages 132-150.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:125:y:2020:i:1:d:10.1007_s11192-020-03645-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.