IDEAS home Printed from https://ideas.repec.org/a/eee/ijrema/v32y2015i1p94-112.html
   My bibliography  Save this article

Improving the statistical performance of tracking studies based on repeated cross-sections with primary dynamic factor analysis

Author

Listed:
  • Du, Rex Yuxing
  • Kamakura, Wagner A.

Abstract

Tracking studies are prevalent in marketing research and virtually all the other social sciences. These studies are predominantly implemented via repeated independent, non-overlapping samples, which are much less costly than recruiting and maintaining a longitudinal panel that track the same sample over time. In the existing literature, data from repeated cross-sectional samples are analyzed either independently for each time period, or longitudinally by focusing on the dynamics of the aggregate measures (e.g., sample averages). In this study, we propose a multivariate state-space model that can be applied directly to the individual-level data from each of the independent samples, simultaneously taking advantage of three patterns embedded in the data: a) inter-temporal dependence within the population means of each variable, b) temporal co-movements across the population means of different variables and c) cross-sectional co-variation across individual responses within each sample. We illustrate our proposed model with two applications, demonstrating the benefits of making full use of all the available data. In the first illustration, we have access to all the individual-level purchase data from one large population of grocery shoppers over a span of 36months. This provides us a testing ground for benchmarking our proposed model against existing approaches in a Monte Carlo experiment, where we show that our model outperforms all the alternatives in inferring population dynamics using data sampled through repeated cross-sections. We find that, as compared with using simple sample averages, our proposed model can improve the accuracy of repeated cross-sectional tracking studies by double digits, without incurring any additional data-gathering costs (or equivalently, reducing the data-gathering costs by double digits while maintaining the desired accuracy level). In the second illustration, we apply the proposed model to repeated cross-sectional surveys that track customer perceptions and satisfaction for an automotive dealer, a situation often encountered by marketing researchers.

Suggested Citation

  • Du, Rex Yuxing & Kamakura, Wagner A., 2015. "Improving the statistical performance of tracking studies based on repeated cross-sections with primary dynamic factor analysis," International Journal of Research in Marketing, Elsevier, vol. 32(1), pages 94-112.
  • Handle: RePEc:eee:ijrema:v:32:y:2015:i:1:p:94-112
    DOI: 10.1016/j.ijresmar.2014.10.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167811614000822
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijresmar.2014.10.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jo Thori Lind, 2005. "Repeated surveys and the Kalman filter," Econometrics Journal, Royal Economic Society, vol. 8(3), pages 418-427, December.
    2. Cheng Hsiao, 2007. "Panel data analysis—advantages and challenges," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 16(1), pages 1-22, May.
    3. Cheng Hsiao, 2007. "Rejoinder on: Panel data analysis—advantages and challenges," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 16(1), pages 56-57, May.
    4. Moshe Feder, 2001. "Time Series Analysis of Repeated Surveys: The State–space Approach," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 55(2), pages 182-199, July.
    5. Koen Pauwels & Dominique M. Hanssens, 2007. "Performance Regimes and Marketing Policy Shifts," Marketing Science, INFORMS, vol. 26(3), pages 293-311, 05-06.
    6. Tanizaki, Hisashi, 1993. "Kalman Filter Model with Qualitative Dependent Variables," The Review of Economics and Statistics, MIT Press, vol. 75(4), pages 747-752, November.
    7. Andrew Harvey & Chia‐Hui Chung, 2000. "Estimating the underlying change in unemployment in the UK," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 163(3), pages 303-309.
    8. Marc Vanhuele & Shuba Srinivasan & Koen Pauwels, 2010. "Mindset Metrics in Market Response Models: An Integrative Approach," Post-Print hal-00528411, HAL.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Krieg, Sabine & van den Brakel, Jan A., 2012. "Estimation of the monthly unemployment rate for six domains through structural time series modelling with cointegrated trends," Computational Statistics & Data Analysis, Elsevier, vol. 56(10), pages 2918-2933.
    2. Hany Eldemerdash & Hugh Metcalf & Sara Maioli, 2014. "Twin deficits: new evidence from a developing (oil vs. non-oil) countries’ perspective," Empirical Economics, Springer, vol. 47(3), pages 825-851, November.
    3. Ding Luo & Oded Cats & Hans Lint, 2020. "Can passenger flow distribution be estimated solely based on network properties in public transport systems?," Transportation, Springer, vol. 47(6), pages 2757-2776, December.
    4. Li, Larry & McMurray, Adela & Sy, Malick & Xue, Jinjun, 2018. "Corporate ownership, efficiency and performance under state capitalism: Evidence from China," Journal of Policy Modeling, Elsevier, vol. 40(4), pages 747-766.
    5. Dzintra Atstāja & Edmira Cakrani, 2024. "Impact of Climate Change on International Tourism Evidence from Baltic Sea Countries," Sustainability, MDPI, vol. 16(12), pages 1-16, June.
    6. Lynn, Peter & Bosch, Oriol, 2021. "Methodological lessons from the pilot longitudinal survey on debt advice," ISER Working Paper Series 2021-03, Institute for Social and Economic Research.
    7. Yasser Razak Hussain & Pranab Mukhopadhyay, 2023. "How Much do Education, Experience, and Social Networks Impact Earnings in India? A Panel Data Analysis Disaggregated by Class, Gender, Caste and Religion," SAGE Open, , vol. 13(4), pages 21582440231, December.
    8. Trabelsi, Emna & Hichri, Walid, 2021. "Central Bank Transparency with (semi-)public Information: Laboratory Experiments," Journal of Behavioral and Experimental Economics (formerly The Journal of Socio-Economics), Elsevier, vol. 90(C).
    9. Noor Zainab.Tunggal & Shariff Umar Shariff Abd. Kadir & Venus-Khim Sen Liew, 2018. "Panel Analysis of Monetary Model of ASEAN-5 Exchange Rates," International Business Research, Canadian Center of Science and Education, vol. 11(11), pages 1-7, November.
    10. Wanglin Ma & Kathryn Bicknell & Alan Renwick, 2019. "Feed use intensification and technical efficiency of dairy farms in New Zealand," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 63(1), pages 20-38, January.
    11. Martey, Edward & Etwire, Prince Maxwell & Abdoulaye, Tahirou, 2020. "Welfare impacts of climate-smart agriculture in Ghana: Does row planting and drought-tolerant maize varieties matter?," Land Use Policy, Elsevier, vol. 95(C).
    12. Wenhao Song & Chunhui Ye & Yuheng Liu & Weisong Cheng, 2021. "Do China’s Urban–Environmental Quality and Economic Growth Conform to the Environmental Kuznets Curve?," IJERPH, MDPI, vol. 18(24), pages 1-15, December.
    13. Elkhan Richard Sadik-Zada & Wilhelm Loewenstein, 2020. "Drivers of CO 2 -Emissions in Fossil Fuel Abundant Settings: (Pooled) Mean Group and Nonparametric Panel Analyses," Energies, MDPI, vol. 13(15), pages 1-24, August.
    14. Vishal Gupta & Sandra C. Mortal & Tina Yang, 2018. "Entrepreneurial orientation and firm value: Does managerial discretion play a role?," Review of Managerial Science, Springer, vol. 12(1), pages 1-26, January.
    15. Aina B. Aidarova & Gulzada Mukhamediyeva & Aizhan A. Yessentayeva & Guliya Utemissova & Karlygash Tastanbekova & Bagila Mustafayeva & Kundyz Myrzabekkyzy, 2024. "Relationship between Oil Exports, Renewable Energy Consumption, Agriculture Industry, and Economic Growth in Selected OPEC Countries: A Panel ARDL Analysis," International Journal of Energy Economics and Policy, Econjournals, vol. 14(6), pages 344-352, November.
    16. Merello, Paloma & Barberá, Antonio & la Poza, Elena De, 2022. "Is the sustainability profile of FinTech companies a key driver of their value?," Technological Forecasting and Social Change, Elsevier, vol. 174(C).
    17. Yuanyuan Qu & Aza Azlina Md Kassim, 2023. "The Impact of Economic Policy Uncertainty on Investment in Real Estate Corporations Based on Sustainable Development: The Mediating Role of House Prices," Sustainability, MDPI, vol. 15(21), pages 1-17, October.
    18. Saldivia, Mauricio & Kristjanpoller, Werner & Olson, Josephine E., 2020. "Energy consumption and GDP revisited: A new panel data approach with wavelet decomposition," Applied Energy, Elsevier, vol. 272(C).
    19. Shuang Meng & Pengxiang Wang & Jiajie Yu, 2022. "Going Abroad and Going Green: The Effects of Top Management Teams’ Overseas Experience on Green Innovation in the Digital Era," IJERPH, MDPI, vol. 19(22), pages 1-20, November.
    20. Migbaru Alamirew Workneh & Zerayehu Sime Eshete, 2021. "Household Level Non-Monetary Poverty in Ethiopia and its Driving Factors: a Multidimensional Approach with Panel Estimation," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 154(1), pages 145-168, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ijrema:v:32:y:2015:i:1:p:94-112. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/international-journal-of-research-in-marketing/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.