IDEAS home Printed from https://ideas.repec.org/a/bla/jorssa/v163y2000i3p303-309.html
   My bibliography  Save this article

Estimating the underlying change in unemployment in the UK

Author

Listed:
  • Andrew Harvey
  • Chia‐Hui Chung

Abstract

By setting up a suitable time series model in state space form, the latest estimate of the underlying current change in a series may be computed by the Kalman filter. This may be done even if the observations are only available in a time‐aggregated form subject to survey sampling error. A related series, possibly observed more frequently, may be used to improve the estimate of change further. The paper applies these techniques to the important problem of estimating the underlying monthly change in unemployment in the UK measured according to the definition of the International Labour Organisation by the Labour Force Survey. The fitted models suggest a reduction in root‐mean‐squared error of around 10% over a simple estimate based on differences if a univariate model is used and a further reduction of 50% if information on claimant counts is taken into account. With seasonally unadjusted data, the bivariate model offers a gain of roughly 40% over the use of annual differences. For both adjusted and unadjusted data, there is a further gain of around 10% if the next month's figure on claimant counts is used. The method preferred is based on a bivariate model with unadjusted data. If the next month's claimant count is known, the root‐mean‐squared error for the estimate of change is just over 10000.

Suggested Citation

  • Andrew Harvey & Chia‐Hui Chung, 2000. "Estimating the underlying change in unemployment in the UK," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 163(3), pages 303-309.
  • Handle: RePEc:bla:jorssa:v:163:y:2000:i:3:p:303-309
    DOI: 10.1111/1467-985X.00171
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/1467-985X.00171
    Download Restriction: no

    File URL: https://libkey.io/10.1111/1467-985X.00171?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssa:v:163:y:2000:i:3:p:303-309. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.