IDEAS home Printed from https://ideas.repec.org/a/eee/ijocip/v25y2019icp125-138.html
   My bibliography  Save this article

Complex approach to assessing resilience of critical infrastructure elements

Author

Listed:
  • Rehak, David
  • Senovsky, Pavel
  • Hromada, Martin
  • Lovecek, Tomas

Abstract

The resilience of elements in a critical infrastructure system is a major factor determining the reliability of services and commodities provided by the critical infrastructure system to society. Resilience can be viewed as a quality which reduces the vulnerability of an element, absorbs the effects of disruptive events, enhances the element's ability to respond and recover, and facilitates its adaptation to disruptive events similar to those encountered in the past. In this respect, resilience assessment plays an important role in ensuring the security and reliability of not only these elements alone, but also of the system as a whole. The paper introduces the CIERA methodology designed for Critical Infrastructure Elements Resilience Assessment. The principle of this method is the statistical assessment of the level of resilience of critical infrastructure elements, involving a complex evaluation of their robustness, their ability to recover functionality after the occurrence of a disruptive event and their capacity to adapt to previous disruptive events. The complex approach thus includes both the assessment of technical and organizational resilience, as well as the identification of weak points in order to strengthen resilience. An example of the application of the CIERA method is presented in the form of a case study focused on assessing the resilience of a selected element of electrical energy infrastructure.

Suggested Citation

  • Rehak, David & Senovsky, Pavel & Hromada, Martin & Lovecek, Tomas, 2019. "Complex approach to assessing resilience of critical infrastructure elements," International Journal of Critical Infrastructure Protection, Elsevier, vol. 25(C), pages 125-138.
  • Handle: RePEc:eee:ijocip:v:25:y:2019:i:c:p:125-138
    DOI: 10.1016/j.ijcip.2019.03.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1874548218301744
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijcip.2019.03.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rehak, David & Markuci, Jiri & Hromada, Martin & Barcova, Karla, 2016. "Quantitative evaluation of the synergistic effects of failures in a critical infrastructure system," International Journal of Critical Infrastructure Protection, Elsevier, vol. 14(C), pages 3-17.
    2. Louis Anthony (Tony)Cox, 2008. "What's Wrong with Risk Matrices?," Risk Analysis, John Wiley & Sons, vol. 28(2), pages 497-512, April.
    3. He, Xian & Cha, Eun Jeong, 2018. "Modeling the damage and recovery of interdependent critical infrastructure systems from natural hazards," Reliability Engineering and System Safety, Elsevier, vol. 177(C), pages 162-175.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. David J. Ball & Laurence Ball‐King, 2013. "Safety Management and Public Spaces: Restoring Balance," Risk Analysis, John Wiley & Sons, vol. 33(5), pages 763-771, May.
    2. Nguyen, Son & Chen, Peggy Shu-Ling & Du, Yuquan & Shi, Wenming, 2019. "A quantitative risk analysis model with integrated deliberative Delphi platform for container shipping operational risks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 129(C), pages 203-227.
    3. Poulin, Craig & Kane, Michael B., 2021. "Infrastructure resilience curves: Performance measures and summary metrics," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    4. Louis Anthony (Tony) Cox, Jr., 2012. "Evaluating and Improving Risk Formulas for Allocating Limited Budgets to Expensive Risk‐Reduction Opportunities," Risk Analysis, John Wiley & Sons, vol. 32(7), pages 1244-1252, July.
    5. Luca Allodi & Fabio Massacci, 2017. "Security Events and Vulnerability Data for Cybersecurity Risk Estimation," Risk Analysis, John Wiley & Sons, vol. 37(8), pages 1606-1627, August.
    6. Stephanie E. Chang & Timothy McDaniels & Jana Fox & Rajan Dhariwal & Holly Longstaff, 2014. "Toward Disaster‐Resilient Cities: Characterizing Resilience of Infrastructure Systems with Expert Judgments," Risk Analysis, John Wiley & Sons, vol. 34(3), pages 416-434, March.
    7. E. S. Levine & Julie F. Waters, 2013. "Managing Risk at the Tucson Sector of the U.S. Border Patrol," Risk Analysis, John Wiley & Sons, vol. 33(7), pages 1281-1292, July.
    8. Eduardo S. Ayra & David Ríos Insua & María Eugenia Castellanos & Lydia Larbi, 2015. "Risk Analysis for Unintentional Slide Deployment During Airline Operations," Risk Analysis, John Wiley & Sons, vol. 35(9), pages 1652-1662, September.
    9. Johnson Holt & Adrian W. Leach & Gritta Schrader & Françoise Petter & Alan MacLeod & Dirk Jan van der Gaag & Richard H. A. Baker & John D. Mumford, 2014. "Eliciting and Combining Decision Criteria Using a Limited Palette of Utility Functions and Uncertainty Distributions: Illustrated by Application to Pest Risk Analysis," Risk Analysis, John Wiley & Sons, vol. 34(1), pages 4-16, January.
    10. Karar, Ahmed Noaman & Labib, Ashraf & Jones, Dylan, 2024. "A resilience-based maintenance optimisation framework using multiple criteria and Knapsack methods," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    11. Alana M. Weir & Thomas M. Wilson & Mark S. Bebbington & Sarah Beaven & Teresa Gordon & Craig Campbell-Smart & Stuart Mead & James H. Williams & Roger Fairclough, 2024. "Approaching the challenge of multi-phase, multi-hazard volcanic impact assessment through the lens of systemic risk: application to Taranaki Mounga," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(10), pages 9327-9360, August.
    12. Rehak, David & Senovsky, Pavel & Hromada, Martin & Lovecek, Tomas & Novotny, Petr, 2018. "Cascading Impact Assessment in a Critical Infrastructure System," International Journal of Critical Infrastructure Protection, Elsevier, vol. 22(C), pages 125-138.
    13. David Rehak & Michal Radimsky & Martin Hromada & Zdenek Dvorak, 2019. "Dynamic Impact Modeling as a Road Transport Crisis Management Support Tool," Administrative Sciences, MDPI, vol. 9(2), pages 1-16, March.
    14. Wei, Lu & Jing, Haozhe & Huang, Jie & Deng, Yuqi & Jing, Zhongbo, 2023. "Do textual risk disclosures reveal corporate risk? Evidence from U.S. fintech corporations," Economic Modelling, Elsevier, vol. 127(C).
    15. Michael R. Powers & Thomas Y. Powers & Siwei Gao, 2012. "Risk Finance for Catastrophe Losses with Pareto‐Calibrated Lévy‐Stable Severities," Risk Analysis, John Wiley & Sons, vol. 32(11), pages 1967-1977, November.
    16. Valaei Sharif, Shahab & Habibi Moshfegh, Peyman & Kashani, Hamed, 2023. "Simulation modeling of operation and coordination of agencies involved in post-disaster response and recovery," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    17. David Rios Insua & David Banks & Jesus Rios, 2016. "Modeling Opponents in Adversarial Risk Analysis," Risk Analysis, John Wiley & Sons, vol. 36(4), pages 742-755, April.
    18. Martin Hromada & David Rehak & Ludek Lukas, 2021. "Resilience Assessment in Electricity Critical Infrastructure from the Point of View of Converged Security," Energies, MDPI, vol. 14(6), pages 1-20, March.
    19. Vicki Bier, 2020. "The Role of Decision Analysis in Risk Analysis: A Retrospective," Risk Analysis, John Wiley & Sons, vol. 40(S1), pages 2207-2217, November.
    20. Zhang, Jintao & Bagtzoglou, Yiannis & Zhu, Jin & Li, Baikun & Zhang, Wei, 2023. "Fragility-based system performance assessment of critical power infrastructure," Reliability Engineering and System Safety, Elsevier, vol. 232(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ijocip:v:25:y:2019:i:c:p:125-138. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/international-journal-of-critical-infrastructure-protection .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.