IDEAS home Printed from https://ideas.repec.org/a/wly/riskan/v34y2014i1p4-16.html
   My bibliography  Save this article

Eliciting and Combining Decision Criteria Using a Limited Palette of Utility Functions and Uncertainty Distributions: Illustrated by Application to Pest Risk Analysis

Author

Listed:
  • Johnson Holt
  • Adrian W. Leach
  • Gritta Schrader
  • Françoise Petter
  • Alan MacLeod
  • Dirk Jan van der Gaag
  • Richard H. A. Baker
  • John D. Mumford

Abstract

Utility functions in the form of tables or matrices have often been used to combine discretely rated decision‐making criteria. Matrix elements are usually specified individually, so no one rule or principle can be easily stated for the utility function as a whole. A series of five matrices are presented that aggregate criteria two at a time using simple rules that express a varying degree of constraint of the lower rating over the higher. A further nine possible matrices were obtained by using a different rule either side of the main axis of the matrix to describe situations where the criteria have a differential influence on the outcome. Uncertainties in the criteria are represented by three alternative frequency distributions from which the assessors select the most appropriate. The output of the utility function is a distribution of rating frequencies that is dependent on the distributions of the input criteria. In pest risk analysis (PRA), seven of these utility functions were required to mimic the logic by which assessors for the European and Mediterranean Plant Protection Organization arrive at an overall rating of pest risk. The framework enables the development of PRAs that are consistent and easy to understand, criticize, compare, and change. When tested in workshops, PRA practitioners thought that the approach accorded with both the logic and the level of resolution that they used in the risk assessments.

Suggested Citation

  • Johnson Holt & Adrian W. Leach & Gritta Schrader & Françoise Petter & Alan MacLeod & Dirk Jan van der Gaag & Richard H. A. Baker & John D. Mumford, 2014. "Eliciting and Combining Decision Criteria Using a Limited Palette of Utility Functions and Uncertainty Distributions: Illustrated by Application to Pest Risk Analysis," Risk Analysis, John Wiley & Sons, vol. 34(1), pages 4-16, January.
  • Handle: RePEc:wly:riskan:v:34:y:2014:i:1:p:4-16
    DOI: 10.1111/risa.12089
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/risa.12089
    Download Restriction: no

    File URL: https://libkey.io/10.1111/risa.12089?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Martin Neil & Norman Fenton & Manesh Tailor, 2005. "Using Bayesian Networks to Model Expected and Unexpected Operational Losses," Risk Analysis, John Wiley & Sons, vol. 25(4), pages 963-972, August.
    2. Louis Anthony (Tony)Cox, 2008. "What's Wrong with Risk Matrices?," Risk Analysis, John Wiley & Sons, vol. 28(2), pages 497-512, April.
    3. Bohanec, Marko & Messéan, Antoine & Scatasta, Sara & Angevin, Frédérique & Griffiths, Bryan & Krogh, Paul Henning & Žnidaršič, Martin & Džeroski, Sašo, 2008. "A qualitative multi-attribute model for economic and ecological assessment of genetically modified crops," Ecological Modelling, Elsevier, vol. 215(1), pages 247-261.
    4. Znidarsic, Martin & Bohanec, Marko & Zupan, Blaz, 2008. "Modelling impacts of cropping systems: Demands and solutions for DEX methodology," European Journal of Operational Research, Elsevier, vol. 189(3), pages 594-608, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jianping Li & Chunbing Bao & Dengsheng Wu, 2018. "How to Design Rating Schemes of Risk Matrices: A Sequential Updating Approach," Risk Analysis, John Wiley & Sons, vol. 38(1), pages 99-117, January.
    2. Xin Ruan & Zhiyi Yin & Dan M. Frangopol, 2015. "Risk Matrix Integrating Risk Attitudes Based on Utility Theory," Risk Analysis, John Wiley & Sons, vol. 35(8), pages 1437-1447, August.
    3. Shabnam Vatanpour & Steve E. Hrudey & Irina Dinu, 2015. "Can Public Health Risk Assessment Using Risk Matrices Be Misleading?," IJERPH, MDPI, vol. 12(8), pages 1-14, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nejc Trdin & Marko Bohanec, 2018. "Extending the multi-criteria decision making method DEX with numeric attributes, value distributions and relational models," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 26(1), pages 1-41, March.
    2. Mouron, Patrik & Heijne, Bart & Naef, Andreas & Strassemeyer, Jörn & Hayer, Frank & Avilla, Jesus & Alaphilippe, Aude & Höhn, Heinrich & Hernandez, José & Mack, Gabriele & Gaillard, Gérard & Solé, Joa, 2012. "Sustainability assessment of crop protection systems: SustainOS methodology and its application for apple orchards," Agricultural Systems, Elsevier, vol. 113(C), pages 1-15.
    3. Yuqian Xu & Lingjiong Zhu & Michael Pinedo, 2020. "Operational Risk Management: A Stochastic Control Framework with Preventive and Corrective Controls," Operations Research, INFORMS, vol. 68(6), pages 1804-1825, November.
    4. David J. Ball & Laurence Ball‐King, 2013. "Safety Management and Public Spaces: Restoring Balance," Risk Analysis, John Wiley & Sons, vol. 33(5), pages 763-771, May.
    5. Nguyen, Son & Chen, Peggy Shu-Ling & Du, Yuquan & Shi, Wenming, 2019. "A quantitative risk analysis model with integrated deliberative Delphi platform for container shipping operational risks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 129(C), pages 203-227.
    6. Louis Anthony (Tony) Cox, Jr., 2012. "Evaluating and Improving Risk Formulas for Allocating Limited Budgets to Expensive Risk‐Reduction Opportunities," Risk Analysis, John Wiley & Sons, vol. 32(7), pages 1244-1252, July.
    7. Luca Allodi & Fabio Massacci, 2017. "Security Events and Vulnerability Data for Cybersecurity Risk Estimation," Risk Analysis, John Wiley & Sons, vol. 37(8), pages 1606-1627, August.
    8. Stephanie E. Chang & Timothy McDaniels & Jana Fox & Rajan Dhariwal & Holly Longstaff, 2014. "Toward Disaster‐Resilient Cities: Characterizing Resilience of Infrastructure Systems with Expert Judgments," Risk Analysis, John Wiley & Sons, vol. 34(3), pages 416-434, March.
    9. C. L. Smith & E. Borgonovo, 2007. "Decision Making During Nuclear Power Plant Incidents—A New Approach to the Evaluation of Precursor Events," Risk Analysis, John Wiley & Sons, vol. 27(4), pages 1027-1042, August.
    10. E. S. Levine & Julie F. Waters, 2013. "Managing Risk at the Tucson Sector of the U.S. Border Patrol," Risk Analysis, John Wiley & Sons, vol. 33(7), pages 1281-1292, July.
    11. Debeljak, Marko & Trajanov, Aneta & Stojanova, Daniela & Leprince, Florence & Džeroski, Sašo, 2012. "Using relational decision trees to model out-crossing rates in a multi-field setting," Ecological Modelling, Elsevier, vol. 245(C), pages 75-83.
    12. Samuel Le Féon & Théo Dubois & Christophe Jaeger & Aurélie Wilfart & Nouraya Akkal-Corfini & Jacopo Bacenetti & Michele Costantini & Joël Aubin, 2021. "DEXiAqua, a Model to Assess the Sustainability of Aquaculture Systems: Methodological Development and Application to a French Salmon Farm," Sustainability, MDPI, vol. 13(14), pages 1-28, July.
    13. Eduardo S. Ayra & David Ríos Insua & María Eugenia Castellanos & Lydia Larbi, 2015. "Risk Analysis for Unintentional Slide Deployment During Airline Operations," Risk Analysis, John Wiley & Sons, vol. 35(9), pages 1652-1662, September.
    14. E. Hernandez & Venkatesh Uddameri, 2010. "Selecting Agricultural Best Management Practices for Water Conservation and Quality Improvements Using Atanassov’s Intuitionistic Fuzzy Sets," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(15), pages 4589-4612, December.
    15. Marjan Brelih & Uroš Rajkovič & Tomaž Ružič & Blaž Rodič & Daniel Kozelj, 2019. "Modelling decision knowledge for the evaluation of water management investment projects," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 27(3), pages 759-781, September.
    16. Emma Apps, 2020. "Applying a Bayesian Network to VaR Calculations," Working Papers 202024, University of Liverpool, Department of Economics.
    17. Hatoum, Khalil & Moussu, Christophe & Gillet, Roland, 2022. "CEO overconfidence: Towards a new measure," International Review of Financial Analysis, Elsevier, vol. 84(C).
    18. Karar, Ahmed Noaman & Labib, Ashraf & Jones, Dylan, 2024. "A resilience-based maintenance optimisation framework using multiple criteria and Knapsack methods," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    19. Wei, Lu & Jing, Haozhe & Huang, Jie & Deng, Yuqi & Jing, Zhongbo, 2023. "Do textual risk disclosures reveal corporate risk? Evidence from U.S. fintech corporations," Economic Modelling, Elsevier, vol. 127(C).
    20. Michael R. Powers & Thomas Y. Powers & Siwei Gao, 2012. "Risk Finance for Catastrophe Losses with Pareto‐Calibrated Lévy‐Stable Severities," Risk Analysis, John Wiley & Sons, vol. 32(11), pages 1967-1977, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:riskan:v:34:y:2014:i:1:p:4-16. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1111/(ISSN)1539-6924 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.