IDEAS home Printed from https://ideas.repec.org/a/gam/jadmsc/v9y2019i2p29-d218069.html
   My bibliography  Save this article

Dynamic Impact Modeling as a Road Transport Crisis Management Support Tool

Author

Listed:
  • David Rehak

    (Faculty of Safety Engineering, VSB—Technical University of Ostrava, 700 30 Ostrava, Czech Republic)

  • Michal Radimsky

    (Faculty of Civil Engineering, Brno University of Technology, 602 00 Brno, Czech Republic)

  • Martin Hromada

    (Faculty of Applied Informatics, Tomas Bata University in Zlín, 760 05 Zlín, Czech Republic)

  • Zdenek Dvorak

    (Faculty of Security Engineering, University of Žilina, 010 26 Žilina, Slovakia)

Abstract

Crisis management must provide data to allow for real-time decision-making. Accurate data is especially needed to minimize the risk of critical infrastructure failure. Research into the possible impacts of critical infrastructure failure is a part of developing a functional and secure infrastructure for each nation state. Road transport is one such sector that has a significant impact on its functions. When this fails, there may be a cascading spread of impacts on the energy, health, and other sectors. In this regard, this paper focuses on the dynamic modeling of the impacts of critical road infrastructure failures. It proposes a dynamic modeling system based on a stochastic approach. Its essence is the macroscopic model-based comparative analysis of a road with a critical element and detour roads. The outputs of this system are planning documents that determine the impacts of functional parameter degradation on detour roads—not only applicable in decision-making concerning the selection of the optimal detour road, but also as a support mechanism in minimising possible risks. In this article we aim to expand the extent of knowledge in the Crisis management and critical infrastructure protection in the road transport sector fields.

Suggested Citation

  • David Rehak & Michal Radimsky & Martin Hromada & Zdenek Dvorak, 2019. "Dynamic Impact Modeling as a Road Transport Crisis Management Support Tool," Administrative Sciences, MDPI, vol. 9(2), pages 1-16, March.
  • Handle: RePEc:gam:jadmsc:v:9:y:2019:i:2:p:29-:d:218069
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2076-3387/9/2/29/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2076-3387/9/2/29/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Simak Ladislav & Ristvej Jozef, 2009. "The Present Status of Creating the Security System of the Slovak Republic after Entering the European Union," Journal of Homeland Security and Emergency Management, De Gruyter, vol. 6(1), pages 1-22, April.
    2. Rehak, David & Senovsky, Pavel & Hromada, Martin & Lovecek, Tomas & Novotny, Petr, 2018. "Cascading Impact Assessment in a Critical Infrastructure System," International Journal of Critical Infrastructure Protection, Elsevier, vol. 22(C), pages 125-138.
    3. Kadri Farid & Birregah Babiga & Châtelet Eric, 2014. "The Impact of Natural Disasters on Critical Infrastructures: A Domino Effect-based Study," Journal of Homeland Security and Emergency Management, De Gruyter, vol. 11(2), pages 217-241, June.
    4. Farid Kadri & B. Birregah & Eric Chatelet, 2014. "The Impact of Natural Disasters on Critical Infrastructures: A Domino Effect-based Study," Post-Print hal-02365385, HAL.
    5. Rehak, David & Markuci, Jiri & Hromada, Martin & Barcova, Karla, 2016. "Quantitative evaluation of the synergistic effects of failures in a critical infrastructure system," International Journal of Critical Infrastructure Protection, Elsevier, vol. 14(C), pages 3-17.
    6. Trucco, P. & Cagno, E. & De Ambroggi, M., 2012. "Dynamic functional modelling of vulnerability and interoperability of Critical Infrastructures," Reliability Engineering and System Safety, Elsevier, vol. 105(C), pages 51-63.
    7. Ouyang, Min, 2014. "Review on modeling and simulation of interdependent critical infrastructure systems," Reliability Engineering and System Safety, Elsevier, vol. 121(C), pages 43-60.
    8. Lovecek Tomas & Ristvej Jozef & Simak Ladislav, 2010. "Critical Infrastructure Protection Systems Effectiveness Evaluation," Journal of Homeland Security and Emergency Management, De Gruyter, vol. 7(1), pages 1-25, May.
    9. Alcaraz, Cristina & Zeadally, Sherali, 2015. "Critical infrastructure protection: Requirements and challenges for the 21st century," International Journal of Critical Infrastructure Protection, Elsevier, vol. 8(C), pages 53-66.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zdenek Dvorak & Bohus Leitner & Michal Ballay & Lenka Mocova & Pavel Fuchs, 2021. "Environmental Impact Modeling for Transportation of Hazardous Liquids," Sustainability, MDPI, vol. 13(20), pages 1-25, October.
    2. Kleprlík Jaroslav & Brázdová Markéta, 2024. "Design of Restrictive Conditions for Simultaneous Loading and Unloading of Goods with Different Temperature Regimes in Vehicle Routing Problem," LOGI – Scientific Journal on Transport and Logistics, Sciendo, vol. 15(1), pages 97-108.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michal Wisniewski, 2021. "The Role of Integral Model of Critical Infrastructure Safety in Industry 4.0," European Research Studies Journal, European Research Studies Journal, vol. 0(3), pages 1153-1188.
    2. Quan Mao & Nan Li, 2018. "Assessment of the impact of interdependencies on the resilience of networked critical infrastructure systems," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 93(1), pages 315-337, August.
    3. Trucco, Paolo & Petrenj, Boris, 2023. "Characterisation of resilience metrics in full-scale applications to interdependent infrastructure systems," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    4. Zio, Enrico, 2016. "Challenges in the vulnerability and risk analysis of critical infrastructures," Reliability Engineering and System Safety, Elsevier, vol. 152(C), pages 137-150.
    5. Rehak, David & Markuci, Jiri & Hromada, Martin & Barcova, Karla, 2016. "Quantitative evaluation of the synergistic effects of failures in a critical infrastructure system," International Journal of Critical Infrastructure Protection, Elsevier, vol. 14(C), pages 3-17.
    6. Wang, Shuliang & Lv, Wenzhuo & Zhang, Jianhua & Luan, Shengyang & Chen, Chen & Gu, Xifeng, 2021. "Method of power network critical nodes identification and robustness enhancement based on a cooperative framework," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    7. Rehak, David & Senovsky, Pavel & Hromada, Martin & Lovecek, Tomas & Novotny, Petr, 2018. "Cascading Impact Assessment in a Critical Infrastructure System," International Journal of Critical Infrastructure Protection, Elsevier, vol. 22(C), pages 125-138.
    8. Zhou, Shenghua & Yang, Yifan & Ng, S. Thomas & Xu, J. Frank & Li, Dezhi, 2020. "Integrating data-driven and physics-based approaches to characterize failures of interdependent infrastructures," International Journal of Critical Infrastructure Protection, Elsevier, vol. 31(C).
    9. Goldbeck, Nils & Angeloudis, Panagiotis & Ochieng, Washington Y., 2019. "Resilience assessment for interdependent urban infrastructure systems using dynamic network flow models," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 62-79.
    10. Bhandari, Pratik & Creighton, Douglas & Gong, Jinzhe & Boyle, Carol & Law, Kris M.Y., 2023. "Evolution of cyber-physical-human water systems: Challenges and gaps," Technological Forecasting and Social Change, Elsevier, vol. 191(C).
    11. Caputo, Antonio C. & Kalemi, Bledar & Paolacci, Fabrizio & Corritore, Daniele, 2020. "Computing resilience of process plants under Na-Tech events: Methodology and application to sesmic loading scenarios," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    12. Praks, Pavel & Kopustinskas, Vytis & Masera, Marcelo, 2015. "Probabilistic modelling of security of supply in gas networks and evaluation of new infrastructure," Reliability Engineering and System Safety, Elsevier, vol. 144(C), pages 254-264.
    13. Lucas Cuadra & Sancho Salcedo-Sanz & Javier Del Ser & Silvia Jiménez-Fernández & Zong Woo Geem, 2015. "A Critical Review of Robustness in Power Grids Using Complex Networks Concepts," Energies, MDPI, vol. 8(9), pages 1-55, August.
    14. Magoua, Joseph Jonathan & Li, Nan, 2023. "The human factor in the disaster resilience modeling of critical infrastructure systems," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    15. Galbusera, Luca & Trucco, Paolo & Giannopoulos, Georgios, 2020. "Modeling interdependencies in multi-sectoral critical infrastructure systems: Evolving the DMCI approach," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
    16. Masato Yamazaki & Atsushi Koike & Yoshinori Sone, 2018. "A Heuristic Approach to the Estimation of Key Parameters for a Monthly, Recursive, Dynamic CGE Model," Economics of Disasters and Climate Change, Springer, vol. 2(3), pages 283-301, October.
    17. Sellevåg, Stig Rune, 2021. "Changes in inoperability for interdependent industry sectors in Norway from 2012 to 2017," International Journal of Critical Infrastructure Protection, Elsevier, vol. 32(C).
    18. Mazur, Christoph & Hoegerle, Yannick & Brucoli, Maria & van Dam, Koen & Guo, Miao & Markides, Christos N. & Shah, Nilay, 2019. "A holistic resilience framework development for rural power systems in emerging economies," Applied Energy, Elsevier, vol. 235(C), pages 219-232.
    19. Johnson, Caroline A. & Flage, Roger & Guikema, Seth D., 2021. "Feasibility study of PRA for critical infrastructure risk analysis," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    20. Zou, Qiling & Chen, Suren, 2019. "Enhancing resilience of interdependent traffic-electric power system," Reliability Engineering and System Safety, Elsevier, vol. 191(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jadmsc:v:9:y:2019:i:2:p:29-:d:218069. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.