IDEAS home Printed from https://ideas.repec.org/a/eee/ijocip/v20y2018icp3-15.html
   My bibliography  Save this article

Finding critical nodes in infrastructure networks

Author

Listed:
  • Faramondi, Luca
  • Setola, Roberto
  • Panzieri, Stefano
  • Pascucci, Federica
  • Oliva, Gabriele

Abstract

It is well known that profiling attacker behavior is an effective way to obtain insights into network attacks and to identify the systems and components that must be protected. This paper presents a novel integer linear programming formulation that models the strategy of an attacker who targets a set of nodes with the goal of compromising or destroying them. The attacker model considers the infliction of the greatest possible damage with minimal attacker effort. Specifically, it is assumed that the attacker is guided by three conflicting objectives: (i) maximization of the number of disconnected components; (ii) minimization of the size of the largest connected component; and (iii) minimization of the attack cost. Compared with other research in the area, the proposed formulation is much more descriptive but has less complexity; thus, it is very useful for predicting attacks and identifying the entities that must be protected. Since exact solutions of the formulation are computationally expensive for large problems, a heuristic algorithm is presented to obtain approximate solutions. Simulation results using a U.S. airport network dataset demonstrate the effectiveness and utility of the proposed approach.

Suggested Citation

  • Faramondi, Luca & Setola, Roberto & Panzieri, Stefano & Pascucci, Federica & Oliva, Gabriele, 2018. "Finding critical nodes in infrastructure networks," International Journal of Critical Infrastructure Protection, Elsevier, vol. 20(C), pages 3-15.
  • Handle: RePEc:eee:ijocip:v:20:y:2018:i:c:p:3-15
    DOI: 10.1016/j.ijcip.2017.11.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1874548217300914
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijcip.2017.11.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ashwin Arulselvan & Clayton W. Commander & Oleg Shylo & Panos M. Pardalos, 2011. "Cardinality-Constrained Critical Node Detection Problem," Springer Optimization and Its Applications, in: Nalân Gülpınar & Peter Harrison & Berç Rüstem (ed.), Performance Models and Risk Management in Communications Systems, pages 79-91, Springer.
    2. Zhe-Ming Lu & Xin-Feng Li, 2016. "Attack Vulnerability of Network Controllability," PLOS ONE, Public Library of Science, vol. 11(9), pages 1-27, September.
    3. Zhang, Zili & Li, Xiangyang & Li, Hengyun, 2015. "A quantitative approach for assessing the critical nodal and linear elements of a railway infrastructure," International Journal of Critical Infrastructure Protection, Elsevier, vol. 8(C), pages 3-15.
    4. Stergiopoulos, George & Kotzanikolaou, Panayiotis & Theocharidou, Marianthi & Gritzalis, Dimitris, 2015. "Risk mitigation strategies for critical infrastructures based on graph centrality analysis," International Journal of Critical Infrastructure Protection, Elsevier, vol. 10(C), pages 34-44.
    5. Réka Albert & Hawoong Jeong & Albert-László Barabási, 2000. "Error and attack tolerance of complex networks," Nature, Nature, vol. 406(6794), pages 378-382, July.
    6. Marco Di Summa & Andrea Grosso & Marco Locatelli, 2012. "Branch and cut algorithms for detecting critical nodes in undirected graphs," Computational Optimization and Applications, Springer, vol. 53(3), pages 649-680, December.
    7. Vitor H. P. Louzada & Fabio Daolio & Hans J. Herrmann & Marco Tomassini, "undated". "Generating Robust and Efficient Networks Under Targeted Attacks," Working Papers ETH-RC-12-011, ETH Zurich, Chair of Systems Design.
    8. Gerald Brown & Matthew Carlyle & Javier Salmerón & Kevin Wood, 2006. "Defending Critical Infrastructure," Interfaces, INFORMS, vol. 36(6), pages 530-544, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiang, Cheng & Liu, Zhonghua, 2019. "Detecting multiple key players under the positive effect by using a distance-based connectivity approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
    2. Hassan Al-Zarooni & Hamdi Bashir, 0. "An integrated ISM fuzzy MICMAC approach for modeling and analyzing electrical power system network interdependencies," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 0, pages 1-23.
    3. Hassan Al-Zarooni & Hamdi Bashir, 2020. "An integrated ISM fuzzy MICMAC approach for modeling and analyzing electrical power system network interdependencies," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 11(6), pages 1204-1226, December.
    4. Sándor, Hunor & Genge, Béla & Szántó, Zoltán & Márton, Lőrinc & Haller, Piroska, 2019. "Cyber attack detection and mitigation: Software Defined Survivable Industrial Control Systems," International Journal of Critical Infrastructure Protection, Elsevier, vol. 25(C), pages 152-168.
    5. Volker Turau & Christoph Weyer, 2019. "Cascading failures in complex networks caused by overload attacks," Journal of Heuristics, Springer, vol. 25(6), pages 837-859, December.
    6. Chen, Wenhao & Li, Jichao & Jiang, Jiang & Chen, Gang, 2022. "Weighted interdependent network disintegration strategy based on Q-learning," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 586(C).
    7. Wang, Shuliang & Sun, Jingya & Zhang, Jianhua & Dong, Qiqi & Gu, Xifeng & Chen, Chen, 2023. "Attack-Defense game analysis of critical infrastructure network based on Cournot model with fixed operating nodes," International Journal of Critical Infrastructure Protection, Elsevier, vol. 40(C).
    8. Goldbeck, Nils & Angeloudis, Panagiotis & Ochieng, Washington Y., 2019. "Resilience assessment for interdependent urban infrastructure systems using dynamic network flow models," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 62-79.
    9. Li, Yulong & Lin, Jie & Zhang, Chi & Zhu, Huaxing & Zeng, Saixing & Sun, Chengshaung, 2022. "Joint optimization of structure and protection of interdependent infrastructure networks," Reliability Engineering and System Safety, Elsevier, vol. 218(PB).
    10. Xiaoqian Sun & Sebastian Wandelt, 2021. "Robustness of Air Transportation as Complex Networks:Systematic Review of 15 Years of Research and Outlook into the Future," Sustainability, MDPI, vol. 13(11), pages 1-19, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gokhan Karakose & Ronald G. McGarvey, 2019. "Optimal Detection of Critical Nodes: Improvements to Model Structure and Performance," Networks and Spatial Economics, Springer, vol. 19(1), pages 1-26, March.
    2. Galbraith, John W. & Iuliani, Luca, 2019. "Measures of robustness for networked critical infrastructure: An empirical comparison on four electrical grids," International Journal of Critical Infrastructure Protection, Elsevier, vol. 27(C).
    3. Alexander Shiroky & Andrey Kalashnikov, 2021. "Mathematical Problems of Managing the Risks of Complex Systems under Targeted Attacks with Known Structures," Mathematics, MDPI, vol. 9(19), pages 1-11, October.
    4. Li, Yapeng & Qiao, Shun & Deng, Ye & Wu, Jun, 2019. "Stackelberg game in critical infrastructures from a network science perspective," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 705-714.
    5. Alexander Veremyev & Oleg A. Prokopyev & Eduardo L. Pasiliao, 2014. "An integer programming framework for critical elements detection in graphs," Journal of Combinatorial Optimization, Springer, vol. 28(1), pages 233-273, July.
    6. Wang, Weiping & Yang, Saini & Hu, Fuyu & Stanley, H. Eugene & He, Shuai & Shi, Mimi, 2018. "An approach for cascading effects within critical infrastructure systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 510(C), pages 164-177.
    7. Wei, Ningji & Walteros, Jose L., 2022. "Integer programming methods for solving binary interdiction games," European Journal of Operational Research, Elsevier, vol. 302(2), pages 456-469.
    8. Kashin Sugishita & Yasuo Asakura, 2021. "Vulnerability studies in the fields of transportation and complex networks: a citation network analysis," Public Transport, Springer, vol. 13(1), pages 1-34, March.
    9. Starita, Stefano & Scaparra, Maria Paola, 2016. "Optimizing dynamic investment decisions for railway systems protection," European Journal of Operational Research, Elsevier, vol. 248(2), pages 543-557.
    10. Vitor H. P. Louzada & Fabio Daolio & Hans J. Herrmann & Marco Tomassini, "undated". "Smart rewiring for network robustness," Working Papers ETH-RC-14-004, ETH Zurich, Chair of Systems Design.
    11. Li, Yinwei & Jiang, Guo-Ping & Wu, Meng & Song, Yu-Rong & Wang, Haiyan, 2021. "Undirected Congruence Model: Topological characteristics and epidemic spreading," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 565(C).
    12. Zhang, Yifan & Ng, S. Thomas, 2021. "A hypothesis-driven framework for resilience analysis of public transport network under compound failure scenarios," International Journal of Critical Infrastructure Protection, Elsevier, vol. 35(C).
    13. Joe Naoum-Sawaya & Christoph Buchheim, 2016. "Robust Critical Node Selection by Benders Decomposition," INFORMS Journal on Computing, INFORMS, vol. 28(1), pages 162-174, February.
    14. T. N. Dinh & M. T. Thai & H. T. Nguyen, 2014. "Bound and exact methods for assessing link vulnerability in complex networks," Journal of Combinatorial Optimization, Springer, vol. 28(1), pages 3-24, July.
    15. Marcus Engsig & Alejandro Tejedor & Yamir Moreno & Efi Foufoula-Georgiou & Chaouki Kasmi, 2024. "DomiRank Centrality reveals structural fragility of complex networks via node dominance," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    16. Hooshmand, F. & Mirarabrazi, F. & MirHassani, S.A., 2020. "Efficient Benders decomposition for distance-based critical node detection problem," Omega, Elsevier, vol. 93(C).
    17. Zhang, Chi & Ramirez-Marquez, José Emmanuel & Wang, Jianhui, 2015. "Critical infrastructure protection using secrecy – A discrete simultaneous game," European Journal of Operational Research, Elsevier, vol. 242(1), pages 212-221.
    18. Sanjeev Goyal & Fernando Vega-Redondo, 2000. "Learning, Network Formation and Coordination," Econometric Society World Congress 2000 Contributed Papers 0113, Econometric Society.
    19. Quayle, A.P. & Siddiqui, A.S. & Jones, S.J.M., 2006. "Preferential network perturbation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 371(2), pages 823-840.
    20. Chen, Lei & Yue, Dong & Dou, Chunxia, 2019. "Optimization on vulnerability analysis and redundancy protection in interdependent networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 1216-1226.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ijocip:v:20:y:2018:i:c:p:3-15. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/international-journal-of-critical-infrastructure-protection .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.