IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v534y2019ics0378437119313408.html
   My bibliography  Save this article

Detecting multiple key players under the positive effect by using a distance-based connectivity approach

Author

Listed:
  • Jiang, Cheng
  • Liu, Zhonghua

Abstract

Key players problems aim to detect multiple players that optimize certain metrics on the network structure and function from two aspects, i.e., the negative effect and positive effect. However, most existing researches focus on modeling for the former, and how to model for the latter needs further exploration. In this paper, we first propose an integer linear programming model with distance-based connectivity for the positive effect. Then, to solve the proposed model, we design a novel heuristic algorithm by combining with local search enforcement in a greedy framework. Finally, we conduct many synthetic and real-world networks to validate the effectiveness and efficiency of the proposed approach. The experimental results show that the proposed approach achieves superior performance on detecting multiple key players, compared with some traditional methods.

Suggested Citation

  • Jiang, Cheng & Liu, Zhonghua, 2019. "Detecting multiple key players under the positive effect by using a distance-based connectivity approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
  • Handle: RePEc:eee:phsmap:v:534:y:2019:i:c:s0378437119313408
    DOI: 10.1016/j.physa.2019.122322
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437119313408
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2019.122322?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jiang, Cheng & Liu, Zhonghua & Wang, Juyun & Yu, Hua & Guo, Xiaoling, 2017. "An optimal approach for the critical node problem using semidefinite programming," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 315-324.
    2. Al-garadi, Mohammed Ali & Varathan, Kasturi Dewi & Ravana, Sri Devi, 2017. "Identification of influential spreaders in online social networks using interaction weighted K-core decomposition method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 468(C), pages 278-288.
    3. Fei, Liguo & Zhang, Qi & Deng, Yong, 2018. "Identifying influential nodes in complex networks based on the inverse-square law," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 1044-1059.
    4. Bernardetta Addis & Roberto Aringhieri & Andrea Grosso & Pierre Hosteins, 2016. "Hybrid constructive heuristics for the critical node problem," Annals of Operations Research, Springer, vol. 238(1), pages 637-649, March.
    5. Hu, Jiantao & Du, Yuxian & Mo, Hongming & Wei, Daijun & Deng, Yong, 2016. "A modified weighted TOPSIS to identify influential nodes in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 444(C), pages 73-85.
    6. Bernardetta Addis & Roberto Aringhieri & Andrea Grosso & Pierre Hosteins, 2016. "Hybrid constructive heuristics for the critical node problem," Annals of Operations Research, Springer, vol. 238(1), pages 637-649, March.
    7. Faramondi, Luca & Setola, Roberto & Panzieri, Stefano & Pascucci, Federica & Oliva, Gabriele, 2018. "Finding critical nodes in infrastructure networks," International Journal of Critical Infrastructure Protection, Elsevier, vol. 20(C), pages 3-15.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Wei & Jiang, Manrui & Jiang, Cheng & Zhang, Jun, 2020. "Critical node detection problem for complex network in undirected weighted networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 538(C).
    2. Hosseinali Salemi & Austin Buchanan, 2022. "Solving the Distance-Based Critical Node Problem," INFORMS Journal on Computing, INFORMS, vol. 34(3), pages 1309-1326, May.
    3. Marco Di Summa & Syed Md Omar Faruk, 2023. "Critical node/edge detection problems on trees," 4OR, Springer, vol. 21(3), pages 439-455, September.
    4. Zhou, Yangming & Wang, Gezi & Hao, Jin-Kao & Geng, Na & Jiang, Zhibin, 2023. "A fast tri-individual memetic search approach for the distance-based critical node problem," European Journal of Operational Research, Elsevier, vol. 308(2), pages 540-554.
    5. Yibo Dong & Jin Liu & Jiaqi Ren & Zhe Li & Weili Li, 2023. "Protecting Infrastructure Networks: Solving the Stackelberg Game with Interval-Valued Intuitionistic Fuzzy Number Payoffs," Mathematics, MDPI, vol. 11(24), pages 1-18, December.
    6. Ahmad, Amreen & Ahmad, Tanvir & Bhatt, Abhishek, 2020. "HWSMCB: A community-based hybrid approach for identifying influential nodes in the social network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    7. Ventresca, Mario & Harrison, Kyle Robert & Ombuki-Berman, Beatrice M., 2018. "The bi-objective critical node detection problem," European Journal of Operational Research, Elsevier, vol. 265(3), pages 895-908.
    8. Wang, Xiaojie & Slamu, Wushour & Guo, Wenqiang & Wang, Sixiu & Ren, Yan, 2022. "A novel semi local measure of identifying influential nodes in complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    9. Lili Sun & Xueyan Liu & Min Zhao & Bo Yang, 2021. "Interpretable Variational Graph Autoencoder with Noninformative Prior," Future Internet, MDPI, vol. 13(2), pages 1-15, February.
    10. Chaharborj, Sarkhosh Seddighi & Nabi, Khondoker Nazmoon & Feng, Koo Lee & Chaharborj, Shahriar Seddighi & Phang, Pei See, 2022. "Controlling COVID-19 transmission with isolation of influential nodes," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    11. Chen, Wei & Hou, Xiaoli & Jiang, Manrui & Jiang, Cheng, 2022. "Identifying systemically important financial institutions in complex network: A case study of Chinese stock market," Emerging Markets Review, Elsevier, vol. 50(C).
    12. Duan, Shuyu & Wen, Tao & Jiang, Wen, 2019. "A new information dimension of complex network based on Rényi entropy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 516(C), pages 529-542.
    13. Kuo, Ting, 2017. "A modified TOPSIS with a different ranking index," European Journal of Operational Research, Elsevier, vol. 260(1), pages 152-160.
    14. Alexander Tselykh & Vladislav Vasilev & Larisa Tselykh & Fernando A. F. Ferreira, 2022. "Influence control method on directed weighted signed graphs with deterministic causality," Annals of Operations Research, Springer, vol. 311(2), pages 1281-1305, April.
    15. Huang, Yubo & Dong, Hongli & Zhang, Weidong & Lu, Junguo, 2019. "Stability analysis of nonlinear oscillator networks based on the mechanism of cascading failures," Chaos, Solitons & Fractals, Elsevier, vol. 128(C), pages 5-15.
    16. Zareie, Ahmad & Sheikhahmadi, Amir, 2019. "EHC: Extended H-index Centrality measure for identification of users’ spreading influence in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 141-155.
    17. Li, Deqiang & Zhao, Laijun & Wang, Chenchen & Sun, Wenjun & Xue, Jian, 2018. "Selection of China’s imported grain distribution centers in the context of the Belt and Road initiative," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 120(C), pages 16-34.
    18. Francesco Ciardiello & Andrea Genovese, 2023. "A comparison between TOPSIS and SAW methods," Annals of Operations Research, Springer, vol. 325(2), pages 967-994, June.
    19. Yin, Likang & Deng, Yong, 2018. "Measuring transferring similarity via local information," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 498(C), pages 102-115.
    20. Yin, Likang & Deng, Yong, 2018. "Toward uncertainty of weighted networks: An entropy-based model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 176-186.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:534:y:2019:i:c:s0378437119313408. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.