IDEAS home Printed from https://ideas.repec.org/a/eee/ijoais/v54y2024ics1467089524000265.html
   My bibliography  Save this article

Using data-driven methods to detect financial statement fraud in the real scenario

Author

Listed:
  • Zhou, Ying
  • Xiao, Zhi
  • Gao, Ruize
  • Wang, Chang

Abstract

This study seeks to explore the potential of data-driven methods for developing a financial statement fraud prediction model. We emphasize that building a fraud prediction model that can be used to detect fraud in real-world applications should receive attention from researchers. However, the severe class imbalance issue and the complex nature of fraudulent activities make it a rather challenging task. To address these problems, we apply the combinations of different sampling techniques and tree-based ensemble classifiers to an extensive set of raw financial statement data. The results show that the models using an extensive set of raw financial data, undersampling techniques and boosting tree classifiers are superior in fraud detection. Moreover, several features without a priori knowledge are identified to be important for fraud prediction models by feature importance evaluation. Accordingly, this study provides a methodological guide for designing fraud prediction models for real-world applications and serves as a preliminary step of the knowledge discovery process to complement fraud detection knowledge systems.

Suggested Citation

  • Zhou, Ying & Xiao, Zhi & Gao, Ruize & Wang, Chang, 2024. "Using data-driven methods to detect financial statement fraud in the real scenario," International Journal of Accounting Information Systems, Elsevier, vol. 54(C).
  • Handle: RePEc:eee:ijoais:v:54:y:2024:i:c:s1467089524000265
    DOI: 10.1016/j.accinf.2024.100693
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1467089524000265
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.accinf.2024.100693?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yang Bao & Bin Ke & Bin Li & Y. Julia Yu & Jie Zhang, 2020. "Detecting Accounting Fraud in Publicly Traded U.S. Firms Using a Machine Learning Approach," Journal of Accounting Research, Wiley Blackwell, vol. 58(1), pages 199-235, March.
    2. Jiandong Chen & Douglas Cumming & Wenxuan Hou & Edward Lee, 2016. "Does the External Monitoring Effect of Financial Analysts Deter Corporate Fraud in China?," Journal of Business Ethics, Springer, vol. 134(4), pages 727-742, April.
    3. Hongwen Han & Jiali Jenna Tang & Qingquan Tang, 2021. "Goodwill Impairment, Securities Analysts, and Information Transparency," European Accounting Review, Taylor & Francis Journals, vol. 30(4), pages 767-799, August.
    4. Joseph F. Brazel & Keith L. Jones & Mark F. Zimbelman, 2009. "Using Nonfinancial Measures to Assess Fraud Risk," Journal of Accounting Research, Wiley Blackwell, vol. 47(5), pages 1135-1166, December.
    5. Yi Wei & Jianguo Chen & Carolyn Wirth, 2017. "Detecting fraud in Chinese listed company balance sheets," Pacific Accounting Review, Emerald Group Publishing Limited, vol. 29(3), pages 356-379, August.
    6. Lars Helge Hass & Monika Tarsalewska & Feng Zhan, 2016. "Equity Incentives and Corporate Fraud in China," Journal of Business Ethics, Springer, vol. 138(4), pages 723-742, November.
    7. Jeremy Bertomeu & Edwige Cheynel & Eric Floyd & Wenqiang Pan, 2021. "Using machine learning to detect misstatements," Review of Accounting Studies, Springer, vol. 26(2), pages 468-519, June.
    8. Ritu Agarwal & Vasant Dhar, 2014. "Editorial —Big Data, Data Science, and Analytics: The Opportunity and Challenge for IS Research," Information Systems Research, INFORMS, vol. 25(3), pages 443-448, September.
    9. Papík, Mário & Papíková, Lenka, 2022. "Detecting accounting fraud in companies reporting under US GAAP through data mining," International Journal of Accounting Information Systems, Elsevier, vol. 45(C).
    10. Xi Chen & Yang Ha (Tony) Cho & Yiwei Dou & Baruch Lev, 2022. "Predicting Future Earnings Changes Using Machine Learning and Detailed Financial Data," Journal of Accounting Research, Wiley Blackwell, vol. 60(2), pages 467-515, May.
    11. Ari Hyytinen & Petri Rouvinen & Mika Pajarinen & Joosua Virtanen, 2023. "Ex Ante Predictability of Rapid Growth: A Design Science Approach," Entrepreneurship Theory and Practice, , vol. 47(6), pages 2465-2493, November.
    12. Ch. Spathis & M. Doumpos & C. Zopounidis, 2002. "Detecting falsified financial statements: a comparative study using multicriteria analysis and multivariate statistical techniques," European Accounting Review, Taylor & Francis Journals, vol. 11(3), pages 509-535.
    13. Chen, Yuh-Jen & Wu, Chun-Han & Chen, Yuh-Min & Li, Hsin-Ying & Chen, Huei-Kuen, 2017. "Enhancement of fraud detection for narratives in annual reports," International Journal of Accounting Information Systems, Elsevier, vol. 26(C), pages 32-45.
    14. Kevin K. Li & Richard G. Sloan, 2017. "Has goodwill accounting gone bad?," Review of Accounting Studies, Springer, vol. 22(2), pages 964-1003, June.
    15. Shahana, T. & Lavanya, Vilvanathan & Bhat, Aamir Rashid, 2023. "State of the art in financial statement fraud detection: A systematic review," Technological Forecasting and Social Change, Elsevier, vol. 192(C).
    16. Zmijewski, Me, 1984. "Methodological Issues Related To The Estimation Of Financial Distress Prediction Models," Journal of Accounting Research, Wiley Blackwell, vol. 22, pages 59-82.
    17. Mark Cecchini & Haldun Aytug & Gary J. Koehler & Praveen Pathak, 2010. "Detecting Management Fraud in Public Companies," Management Science, INFORMS, vol. 56(7), pages 1146-1160, July.
    18. Nerissa C. Brown & Richard M. Crowley & W. Brooke Elliott, 2020. "What Are You Saying? Using topic to Detect Financial Misreporting," Journal of Accounting Research, Wiley Blackwell, vol. 58(1), pages 237-291, March.
    19. Achakzai, Muhammad Atif Khan & Juan, Peng, 2022. "Using machine learning Meta-Classifiers to detect financial frauds," Finance Research Letters, Elsevier, vol. 48(C).
    20. Craja, Patricia & Kim, Alisa & Lessmann, Stefan, 2020. "Deep Learning application for fraud detection in financial statements," IRTG 1792 Discussion Papers 2020-007, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Ying & Li, Haoran & Xiao, Zhi & Qiu, Jing, 2023. "A user-centered explainable artificial intelligence approach for financial fraud detection," Finance Research Letters, Elsevier, vol. 58(PA).
    2. Xin Xu & Feng Xiong & Zhe An, 2023. "Using Machine Learning to Predict Corporate Fraud: Evidence Based on the GONE Framework," Journal of Business Ethics, Springer, vol. 186(1), pages 137-158, August.
    3. Achakzai, Muhammad Atif Khan & Peng, Juan, 2023. "Detecting financial statement fraud using dynamic ensemble machine learning," International Review of Financial Analysis, Elsevier, vol. 89(C).
    4. Zhao, Qi & Xu, Weijun & Ji, Yucheng, 2023. "Predicting financial distress of Chinese listed companies using machine learning: To what extent does textual disclosure matter?," International Review of Financial Analysis, Elsevier, vol. 89(C).
    5. Zhang, Chanyuan (Abigail) & Cho, Soohyun & Vasarhelyi, Miklos, 2022. "Explainable Artificial Intelligence (XAI) in auditing," International Journal of Accounting Information Systems, Elsevier, vol. 46(C).
    6. Yunchuan Sun & Xiaoping Zeng & Ying Xu & Hong Yue & Xipu Yu, 2024. "An intelligent detecting model for financial frauds in Chinese A‐share market," Economics and Politics, Wiley Blackwell, vol. 36(2), pages 1110-1136, July.
    7. Monica Ramos Montesdeoca & Agustín J. Sánchez Medina & Felix Blázquez Santana, 2019. "Research Topics in Accounting Fraud in the 21st Century: A State of the Art," Sustainability, MDPI, vol. 11(6), pages 1-31, March.
    8. Maria Tragouda & Michalis Doumpos & Constantin Zopounidis, 2024. "Identification of fraudulent financial statements through a multi‐label classification approach," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 31(2), June.
    9. Evangelos Liaras & Michail Nerantzidis & Antonios Alexandridis, 2024. "Machine learning in accounting and finance research: a literature review," Review of Quantitative Finance and Accounting, Springer, vol. 63(4), pages 1431-1471, November.
    10. Bhattacharya, Indranil & Mickovic, Ana, 2024. "Accounting fraud detection using contextual language learning," International Journal of Accounting Information Systems, Elsevier, vol. 53(C).
    11. Xiaowei Chen & Cong Zhai, 2023. "Bagging or boosting? Empirical evidence from financial statement fraud detection," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 63(5), pages 5093-5142, December.
    12. Cebi, Selcuk & Karakurt, Necip Fazıl & Kurtulus, Erkan & Tokgoz, Bunyamin, 2024. "Development of a decision support system for client acceptance in independent audit process," International Journal of Accounting Information Systems, Elsevier, vol. 53(C).
    13. Li, Jingyu & Guo, Ce & Lv, Sijia & Xie, Qiwei & Zheng, Xiaolong, 2024. "Financial fraud detection for Chinese listed firms: Does managers' abnormal tone matter?," Emerging Markets Review, Elsevier, vol. 62(C).
    14. Abdullah Albizri & Deniz Appelbaum & Nicholas Rizzotto, 2019. "Evaluation of financial statements fraud detection research: a multi-disciplinary analysis," International Journal of Disclosure and Governance, Palgrave Macmillan, vol. 16(4), pages 206-241, December.
    15. Elias Zavitsanos & Dimitris Mavroeidis & Konstantinos Bougiatiotis & Eirini Spyropoulou & Lefteris Loukas & Georgios Paliouras, 2023. "Financial misstatement detection: a realistic evaluation," Papers 2305.17457, arXiv.org.
    16. Essi Nousiainen & Mikko Ranta & Mika Ylinen & Marko Järvenpää, 2024. "Using machine learning and 10‐K filings to measure innovation," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 64(4), pages 3211-3239, December.
    17. Li, Jing & Li, Nan & Xia, Tongshui & Guo, Jinjin, 2023. "Textual analysis and detection of financial fraud: Evidence from Chinese manufacturing firms," Economic Modelling, Elsevier, vol. 126(C).
    18. Rahman, Md Jahidur & Zhu, Hongtao, 2024. "Detecting accounting fraud in family firms: Evidence from machine learning approaches," Advances in accounting, Elsevier, vol. 64(C).
    19. Miao Liu, 2022. "Assessing Human Information Processing in Lending Decisions: A Machine Learning Approach," Journal of Accounting Research, Wiley Blackwell, vol. 60(2), pages 607-651, May.
    20. Laure Batz, 2023. "Financial market enforcement in France," European Journal of Law and Economics, Springer, vol. 55(3), pages 409-468, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ijoais:v:54:y:2024:i:c:s1467089524000265. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/international-journal-of-accounting-information-systems/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.