IDEAS home Printed from https://ideas.repec.org/a/spr/reaccs/v26y2021i2d10.1007_s11142-020-09563-8.html
   My bibliography  Save this article

Using machine learning to detect misstatements

Author

Listed:
  • Jeremy Bertomeu

    (Washington University)

  • Edwige Cheynel

    (Washington University)

  • Eric Floyd

    (University of California San Diego)

  • Wenqiang Pan

    (Columbia University)

Abstract

Machine learning offers empirical methods to sift through accounting datasets with a large number of variables and limited a priori knowledge about functional forms. In this study, we show that these methods help detect and interpret patterns present in ongoing accounting misstatements. We use a wide set of variables from accounting, capital markets, governance, and auditing datasets to detect material misstatements. A primary insight of our analysis is that accounting variables, while they do not detect misstatements well on their own, become important with suitable interactions with audit and market variables. We also analyze differences between misstatements and irregularities, compare algorithms, examine one-year- and two-year-ahead predictions and interpret groups at greater risk of misstatements.

Suggested Citation

  • Jeremy Bertomeu & Edwige Cheynel & Eric Floyd & Wenqiang Pan, 2021. "Using machine learning to detect misstatements," Review of Accounting Studies, Springer, vol. 26(2), pages 468-519, June.
  • Handle: RePEc:spr:reaccs:v:26:y:2021:i:2:d:10.1007_s11142-020-09563-8
    DOI: 10.1007/s11142-020-09563-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11142-020-09563-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11142-020-09563-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yang Bao & Bin Ke & Bin Li & Y. Julia Yu & Jie Zhang, 2020. "Detecting Accounting Fraud in Publicly Traded U.S. Firms Using a Machine Learning Approach," Journal of Accounting Research, Wiley Blackwell, vol. 58(1), pages 199-235, March.
    2. Mark L. DeFond & K. Raghunandan & K.R. Subramanyam, 2002. "Do Non–Audit Service Fees Impair Auditor Independence? Evidence from Going Concern Audit Opinions," Journal of Accounting Research, Wiley Blackwell, vol. 40(4), pages 1247-1274, September.
    3. Glosten, Lawrence R. & Milgrom, Paul R., 1985. "Bid, ask and transaction prices in a specialist market with heterogeneously informed traders," Journal of Financial Economics, Elsevier, vol. 14(1), pages 71-100, March.
    4. Kasznik, R, 1999. "On the association between voluntary disclosure and earnings management," Journal of Accounting Research, Wiley Blackwell, vol. 37(1), pages 57-81.
    5. Bertomeu, Jeremy & Marinovic, Ivan, 2015. "A Theory of Hard and Soft Information," Research Papers 3318, Stanford University, Graduate School of Business.
    6. Jon Kleinberg & Himabindu Lakkaraju & Jure Leskovec & Jens Ludwig & Sendhil Mullainathan, 2018. "Human Decisions and Machine Predictions," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 133(1), pages 237-293.
    7. E. Johnson & Inder K. Khurana & J. Kenneth Reynolds, 2002. "Audit†Firm Tenure and the Quality of Financial Reports," Contemporary Accounting Research, John Wiley & Sons, vol. 19(4), pages 637-660, December.
    8. Patricia M. Dechow & Weili Ge & Chad R. Larson & Richard G. Sloan, 2011. "Predicting Material Accounting Misstatements," Contemporary Accounting Research, John Wiley & Sons, vol. 28(1), pages 17-82, March.
    9. Avramov, Doron & Chordia, Tarun & Jostova, Gergana & Philipov, Alexander, 2009. "Credit ratings and the cross-section of stock returns," Journal of Financial Markets, Elsevier, vol. 12(3), pages 469-499, August.
    10. Jon A. Garfinkel, 2009. "Measuring Investors' Opinion Divergence," Journal of Accounting Research, Wiley Blackwell, vol. 47(5), pages 1317-1348, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiaowei Chen & Cong Zhai, 2023. "Bagging or boosting? Empirical evidence from financial statement fraud detection," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 63(5), pages 5093-5142, December.
    2. Zhao, Qi & Xu, Weijun & Ji, Yucheng, 2023. "Predicting financial distress of Chinese listed companies using machine learning: To what extent does textual disclosure matter?," International Review of Financial Analysis, Elsevier, vol. 89(C).
    3. Xin Xu & Feng Xiong & Zhe An, 2023. "Using Machine Learning to Predict Corporate Fraud: Evidence Based on the GONE Framework," Journal of Business Ethics, Springer, vol. 186(1), pages 137-158, August.
    4. Geoffrey M. Ngene & Jinghua Wang, 2024. "Transitory and permanent shock transmissions between real estate investment trusts and other assets: Evidence from time‐frequency decomposition and machine learning," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 64(1), pages 539-573, March.
    5. Miao Liu, 2022. "Assessing Human Information Processing in Lending Decisions: A Machine Learning Approach," Journal of Accounting Research, Wiley Blackwell, vol. 60(2), pages 607-651, May.
    6. Achakzai, Muhammad Atif Khan & Peng, Juan, 2023. "Detecting financial statement fraud using dynamic ensemble machine learning," International Review of Financial Analysis, Elsevier, vol. 89(C).
    7. Yunchuan Sun & Xiaoping Zeng & Ying Xu & Hong Yue & Xipu Yu, 2024. "An intelligent detecting model for financial frauds in Chinese A‐share market," Economics and Politics, Wiley Blackwell, vol. 36(2), pages 1110-1136, July.
    8. Zhou, Jinwei & Luo, Qi, 2024. "Influence factor studies based on ensemble learning on the innovation performance of technology mergers and acquisitions," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 222(C), pages 67-89.
    9. Kelton, Andrea Seaton & Murthy, Uday S., 2023. "Reimagining design science and behavioral science AIS research through a business activity lens," International Journal of Accounting Information Systems, Elsevier, vol. 50(C).
    10. Sun, Guanglin & Yin, Ding & Kong, Tao & Yin, Lei, 2024. "The impact of the integration of the digital economy and the real economy on the risk of stock price collapse," Pacific-Basin Finance Journal, Elsevier, vol. 85(C).
    11. Zhou, Ying & Li, Haoran & Xiao, Zhi & Qiu, Jing, 2023. "A user-centered explainable artificial intelligence approach for financial fraud detection," Finance Research Letters, Elsevier, vol. 58(PA).
    12. Ruijie Sun & Feng Liu & Yinan Li & Rongping Wang & Jing Luo, 2024. "Machine Learning for Predicting Corporate Violations: How Do CEO Characteristics Matter?," Journal of Business Ethics, Springer, vol. 195(1), pages 151-166, November.
    13. Hoang, Daniel & Wiegratz, Kevin, 2022. "Machine learning methods in finance: Recent applications and prospects," Working Paper Series in Economics 158, Karlsruhe Institute of Technology (KIT), Department of Economics and Management.
    14. Slavko ?odan, 0000. "Can Accrual-based Metrics Indicate Material Accounting Misstatements? Evidence on Audit Adjustments," Proceedings of Economics and Finance Conferences 14416287, International Institute of Social and Economic Sciences.
    15. Xi Chen & Yang Ha (Tony) Cho & Yiwei Dou & Baruch Lev, 2022. "Predicting Future Earnings Changes Using Machine Learning and Detailed Financial Data," Journal of Accounting Research, Wiley Blackwell, vol. 60(2), pages 467-515, May.
    16. Luigi Rombi, 2024. "Handbook of accounting, accountability and governance edited by Garry D. Carnegie and Christopher J. Napier," Journal of Management & Governance, Springer;Accademia Italiana di Economia Aziendale (AIDEA), vol. 28(3), pages 943-955, September.
    17. Cebi, Selcuk & Karakurt, Necip Fazıl & Kurtulus, Erkan & Tokgoz, Bunyamin, 2024. "Development of a decision support system for client acceptance in independent audit process," International Journal of Accounting Information Systems, Elsevier, vol. 53(C).
    18. Autore, Donald & Chen, Huimin (Amy) & Clarke, Nicholas & Lin, Jingrong, 2024. "Blockchain and earnings management: Evidence from the supply chain," The British Accounting Review, Elsevier, vol. 56(4).
    19. Downen, Tom & Kim, Sarah & Lee, Lorraine, 2024. "Algorithm aversion, emotions, and investor reaction: Does disclosing the use of AI influence investment decisions?," International Journal of Accounting Information Systems, Elsevier, vol. 52(C).
    20. Zhang, Chanyuan (Abigail) & Cho, Soohyun & Vasarhelyi, Miklos, 2022. "Explainable Artificial Intelligence (XAI) in auditing," International Journal of Accounting Information Systems, Elsevier, vol. 46(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xin Xu & Feng Xiong & Zhe An, 2023. "Using Machine Learning to Predict Corporate Fraud: Evidence Based on the GONE Framework," Journal of Business Ethics, Springer, vol. 186(1), pages 137-158, August.
    2. Shivaram Rajgopal & Suraj Srinivasan & Xin Zheng, 2021. "Measuring audit quality," Review of Accounting Studies, Springer, vol. 26(2), pages 559-619, June.
    3. Achakzai, Muhammad Atif Khan & Peng, Juan, 2023. "Detecting financial statement fraud using dynamic ensemble machine learning," International Review of Financial Analysis, Elsevier, vol. 89(C).
    4. Chen, Long & Krishnan, Gopal V. & Yu, Wei, 2018. "The relation between audit fee cuts during the global financial crisis and earnings quality and audit quality," Advances in accounting, Elsevier, vol. 43(C), pages 14-31.
    5. Xiaowei Chen & Cong Zhai, 2023. "Bagging or boosting? Empirical evidence from financial statement fraud detection," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 63(5), pages 5093-5142, December.
    6. Wu, Chloe Yu-Hsuan & Hsu, Hwa-Hsien & Haslam, Jim, 2016. "Audit committees, non-audit services, and auditor reporting decisions prior to failure," The British Accounting Review, Elsevier, vol. 48(2), pages 240-256.
    7. Campa, Domenico & Camacho-Miñano, María-del-Mar, 2015. "The impact of SME’s pre-bankruptcy financial distress on earnings management tools," International Review of Financial Analysis, Elsevier, vol. 42(C), pages 222-234.
    8. Camacho-Miñano, María-del-Mar & Campa, Domenico, 2014. "Integrity of financial information as a determinant of the outcome of a bankruptcy procedure," International Review of Law and Economics, Elsevier, vol. 37(C), pages 76-85.
    9. Zhang, Chanyuan (Abigail) & Cho, Soohyun & Vasarhelyi, Miklos, 2022. "Explainable Artificial Intelligence (XAI) in auditing," International Journal of Accounting Information Systems, Elsevier, vol. 46(C).
    10. Mingzi Song & Naoto Oshiro & Akinobu Shuto, 2016. "Predicting Accounting Fraud: Evidence from Japan," The Japanese Accounting Review, Research Institute for Economics & Business Administration, Kobe University, vol. 6, pages 17-63, December.
    11. Yunchuan Sun & Xiaoping Zeng & Ying Xu & Hong Yue & Xipu Yu, 2024. "An intelligent detecting model for financial frauds in Chinese A‐share market," Economics and Politics, Wiley Blackwell, vol. 36(2), pages 1110-1136, July.
    12. Iatridis, George, 2010. "International Financial Reporting Standards and the quality of financial statement information," International Review of Financial Analysis, Elsevier, vol. 19(3), pages 193-204, June.
    13. Zhou, Ying & Li, Haoran & Xiao, Zhi & Qiu, Jing, 2023. "A user-centered explainable artificial intelligence approach for financial fraud detection," Finance Research Letters, Elsevier, vol. 58(PA).
    14. Nemit Shroff & Amy X. Sun & Hal D. White & Weining Zhang, 2013. "Voluntary Disclosure and Information Asymmetry: Evidence from the 2005 Securities Offering Reform," Journal of Accounting Research, Wiley Blackwell, vol. 51(5), pages 1299-1345, December.
    15. Katsuhiko Muramiya & Kazuhisa Otogawa & Tomomi Takada, 2008. "Abnormal Accrual, Informed Trader, and Long-Term Stock Return: Evidence from Japan," Discussion Paper Series 233, Research Institute for Economics & Business Administration, Kobe University.
    16. Timothy B. Bell & Monika Causholli & W. Robert Knechel, 2015. "Audit Firm Tenure, Non‐Audit Services, and Internal Assessments of Audit Quality," Journal of Accounting Research, Wiley Blackwell, vol. 53(3), pages 461-509, June.
    17. Knechel, W. Robert & Thomas, Edward & Driskill, Matthew, 2020. "Understanding financial auditing from a service perspective," Accounting, Organizations and Society, Elsevier, vol. 81(C).
    18. Beardsley, Erik L. & Imdieke, Andrew J. & Omer, Thomas C., 2021. "The distraction effect of non-audit services on audit quality," Journal of Accounting and Economics, Elsevier, vol. 71(2).
    19. Mohamed Khalil & Aydin Ozkan, 2016. "Board Independence, Audit Quality and Earnings Management: Evidence from Egypt," Journal of Emerging Market Finance, Institute for Financial Management and Research, vol. 15(1), pages 84-118, April.
    20. Giuseppe Iuliano & Gaetano Matonti, 2015. "Do big 4 audit companies detect earnings management and report it in the audit opinion? Empirical evidence from italian non-listed firms," ESPERIENZE D'IMPRESA, FrancoAngeli Editore, vol. 2015(2), pages 5-43.

    More about this item

    Keywords

    Restatement; Manipulation; Earnings management; Machine learning; Data analytics; Regression tree; Misstatement; Irregularity; Fraud; Prediction; SEC; Enforcement; Gradient boosted regression tree; Data mining; Accounting; Detection; AAERs;
    All these keywords.

    JEL classification:

    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
    • D83 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Search; Learning; Information and Knowledge; Communication; Belief; Unawareness
    • G38 - Financial Economics - - Corporate Finance and Governance - - - Government Policy and Regulation
    • K22 - Law and Economics - - Regulation and Business Law - - - Business and Securities Law
    • K42 - Law and Economics - - Legal Procedure, the Legal System, and Illegal Behavior - - - Illegal Behavior and the Enforcement of Law
    • M41 - Business Administration and Business Economics; Marketing; Accounting; Personnel Economics - - Accounting - - - Accounting

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:reaccs:v:26:y:2021:i:2:d:10.1007_s11142-020-09563-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.