Using machine learning Meta-Classifiers to detect financial frauds
Author
Abstract
Suggested Citation
DOI: 10.1016/j.frl.2022.102915
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- David F. Larcker & Anastasia A. Zakolyukina, 2012.
"Detecting Deceptive Discussions in Conference Calls,"
Journal of Accounting Research, Wiley Blackwell, vol. 50(2), pages 495-540, May.
- Larcker, David F. & Zakolyukina, Anastasia A., 2010. "Detecting Deceptive Discussions in Conference Calls," Research Papers 2060, Stanford University, Graduate School of Business.
- Yang Bao & Bin Ke & Bin Li & Y. Julia Yu & Jie Zhang, 2020. "Detecting Accounting Fraud in Publicly Traded U.S. Firms Using a Machine Learning Approach," Journal of Accounting Research, Wiley Blackwell, vol. 58(1), pages 199-235, March.
- Chen, Gongmeng & Firth, Michael & Gao, Daniel N. & Rui, Oliver M., 2005. "Is China's securities regulatory agency a toothless tiger? Evidence from enforcement actions," Journal of Accounting and Public Policy, Elsevier, vol. 24(6), pages 451-488.
- Patricia M. Dechow & Weili Ge & Chad R. Larson & Richard G. Sloan, 2011. "Predicting Material Accounting Misstatements," Contemporary Accounting Research, John Wiley & Sons, vol. 28(1), pages 17-82, March.
- Zhou, Zhong-guo & Hussein, Monica & Deng, Qi, 2021. "ChiNext IPOs' initial returns before and after the 2013 stock market reform: What can we learn?," Emerging Markets Review, Elsevier, vol. 48(C).
- Mark Cecchini & Haldun Aytug & Gary J. Koehler & Praveen Pathak, 2010. "Detecting Management Fraud in Public Companies," Management Science, INFORMS, vol. 56(7), pages 1146-1160, July.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Shi, Feifen & Zhao, Chuanjun, 2023. "Enhancing financial fraud detection with hierarchical graph attention networks: A study on integrating local and extensive structural information," Finance Research Letters, Elsevier, vol. 58(PB).
- Zhou, Ying & Li, Haoran & Xiao, Zhi & Qiu, Jing, 2023. "A user-centered explainable artificial intelligence approach for financial fraud detection," Finance Research Letters, Elsevier, vol. 58(PA).
- Chen, Dangxing & Ye, Jiahui & Ye, Weicheng, 2023. "Interpretable selective learning in credit risk," Research in International Business and Finance, Elsevier, vol. 65(C).
- Rahman, Md Jahidur & Zhu, Hongtao, 2024. "Detecting accounting fraud in family firms: Evidence from machine learning approaches," Advances in accounting, Elsevier, vol. 64(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Achakzai, Muhammad Atif Khan & Peng, Juan, 2023. "Detecting financial statement fraud using dynamic ensemble machine learning," International Review of Financial Analysis, Elsevier, vol. 89(C).
- Yunchuan Sun & Xiaoping Zeng & Ying Xu & Hong Yue & Xipu Yu, 2024. "An intelligent detecting model for financial frauds in Chinese A‐share market," Economics and Politics, Wiley Blackwell, vol. 36(2), pages 1110-1136, July.
- Zhang, Chanyuan (Abigail) & Cho, Soohyun & Vasarhelyi, Miklos, 2022. "Explainable Artificial Intelligence (XAI) in auditing," International Journal of Accounting Information Systems, Elsevier, vol. 46(C).
- Abdullah Albizri & Deniz Appelbaum & Nicholas Rizzotto, 2019. "Evaluation of financial statements fraud detection research: a multi-disciplinary analysis," International Journal of Disclosure and Governance, Palgrave Macmillan, vol. 16(4), pages 206-241, December.
- Li, Jing & Li, Nan & Xia, Tongshui & Guo, Jinjin, 2023. "Textual analysis and detection of financial fraud: Evidence from Chinese manufacturing firms," Economic Modelling, Elsevier, vol. 126(C).
- Md Jahidur Rahman & Hongtao Zhu, 2023. "Predicting accounting fraud using imbalanced ensemble learning classifiers – evidence from China," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 63(3), pages 3455-3486, September.
- Bolin Liao & Zhendai Huang & Xinwei Cao & Jianfeng Li, 2022. "Adopting Nonlinear Activated Beetle Antennae Search Algorithm for Fraud Detection of Public Trading Companies: A Computational Finance Approach," Mathematics, MDPI, vol. 10(13), pages 1-14, June.
- Rong Liu & Jujun Huang & Zhongju Zhang, 2023. "Tracking disclosure change trajectories for financial fraud detection," Production and Operations Management, Production and Operations Management Society, vol. 32(2), pages 584-602, February.
- Xiaowei Chen & Cong Zhai, 2023. "Bagging or boosting? Empirical evidence from financial statement fraud detection," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 63(5), pages 5093-5142, December.
- Xin Xu & Feng Xiong & Zhe An, 2023. "Using Machine Learning to Predict Corporate Fraud: Evidence Based on the GONE Framework," Journal of Business Ethics, Springer, vol. 186(1), pages 137-158, August.
- Elias Zavitsanos & Dimitris Mavroeidis & Konstantinos Bougiatiotis & Eirini Spyropoulou & Lefteris Loukas & Georgios Paliouras, 2023. "Financial misstatement detection: a realistic evaluation," Papers 2305.17457, arXiv.org.
- Yang Bao & Bin Ke & Bin Li & Y. Julia Yu & Jie Zhang, 2021. "A Response to "Critique of an Article on Machine Learning in the Detection of Accounting Fraud"," Econ Journal Watch, Econ Journal Watch, vol. 18(1), pages 1-71–78, March.
- Maria Tragouda & Michalis Doumpos & Constantin Zopounidis, 2024. "Identification of fraudulent financial statements through a multi‐label classification approach," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 31(2), June.
- Lukui Huang & Alan Abrahams & Peter Ractham, 2022. "Enhanced financial fraud detection using cost‐sensitive cascade forest with missing value imputation," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 29(3), pages 133-155, July.
- Lars Elend & Sebastian A. Tideman & Kerstin Lopatta & Oliver Kramer, 2020. "Earnings Prediction with Deep Learning," Papers 2006.03132, arXiv.org, revised Oct 2020.
- Zvi Singer & Jing Zhang, 2022. "Do companies try to conceal financial misstatements through auditor shopping?," Journal of Business Finance & Accounting, Wiley Blackwell, vol. 49(1-2), pages 140-180, January.
- Ashton, John & Burnett, Tim & Diaz-Rainey, Ivan & Ormosi, Peter, 2021. "Known unknowns: How much financial misconduct is detected and deterred?," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 74(C).
- Dan Amiram & Zahn Bozanic & James D. Cox & Quentin Dupont & Jonathan M. Karpoff & Richard Sloan, 2018. "Financial reporting fraud and other forms of misconduct: a multidisciplinary review of the literature," Review of Accounting Studies, Springer, vol. 23(2), pages 732-783, June.
- Melanie Millar & Roger M. White & Xin Zheng, 2023. "Substance Abuse and Workplace Fraud: Evidence from Physicians," Journal of Business Ethics, Springer, vol. 183(2), pages 585-602, March.
- Yasheng Chen & Zhuojun Wu, 2022. "Financial Fraud Detection of Listed Companies in China: A Machine Learning Approach," Sustainability, MDPI, vol. 15(1), pages 1-15, December.
More about this item
Keywords
Machine learning; Financial fraud; Meta-Classifiers; Voting-Classifier; Stacked-Classifier;All these keywords.
JEL classification:
- C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
- C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
- M41 - Business Administration and Business Economics; Marketing; Accounting; Personnel Economics - - Accounting - - - Accounting
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:finlet:v:48:y:2022:i:c:s1544612322001866. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/frl .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.