IDEAS home Printed from https://ideas.repec.org/a/eee/ijoais/v53y2024ics1467089524000150.html
   My bibliography  Save this article

Accounting fraud detection using contextual language learning

Author

Listed:
  • Bhattacharya, Indranil
  • Mickovic, Ana

Abstract

Accounting fraud is a widespread problem that causes significant damage in the economic market. Detection and investigation of fraudulent firms require a large amount of time, money, and effort for corporate monitors and regulators. In this study, we explore how textual contents from financial reports help in detecting accounting fraud. Pre-trained contextual language learning models, such as BERT, have significantly advanced natural language processing in recent years. We fine-tune the BERT model on Management Discussion and Analysis (MD&A) sections of annual 10-K reports from the Securities and Exchange Commission (SEC) database. Our final model outperforms the textual benchmark model and the quantitative benchmark model from the previous literature by 15% and 12%, respectively. Further, our model identifies five times more fraudulent firm-year observations than the textual benchmark by investigating the same number of firms, and three times more than the quantitative benchmark. Optimizing this investigation process, where more fraudulent observations are detected in the same size of the investigation sample, would be of great economic significance for regulators, investors, financial analysts, and auditors.

Suggested Citation

  • Bhattacharya, Indranil & Mickovic, Ana, 2024. "Accounting fraud detection using contextual language learning," International Journal of Accounting Information Systems, Elsevier, vol. 53(C).
  • Handle: RePEc:eee:ijoais:v:53:y:2024:i:c:s1467089524000150
    DOI: 10.1016/j.accinf.2024.100682
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1467089524000150
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.accinf.2024.100682?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuqi Nie & Yaxuan Kong & Xiaowen Dong & John M. Mulvey & H. Vincent Poor & Qingsong Wen & Stefan Zohren, 2024. "A Survey of Large Language Models for Financial Applications: Progress, Prospects and Challenges," Papers 2406.11903, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ijoais:v:53:y:2024:i:c:s1467089524000150. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/international-journal-of-accounting-information-systems/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.