IDEAS home Printed from https://ideas.repec.org/a/wly/isacfm/v31y2024i2ne1564.html
   My bibliography  Save this article

Identification of fraudulent financial statements through a multi‐label classification approach

Author

Listed:
  • Maria Tragouda
  • Michalis Doumpos
  • Constantin Zopounidis

Abstract

Although the financial audit controls in companies have advanced over the years, the number of corporate fraud instances is growing, thus raising the need for investigating the factors that can be used as early warning signals and developing effective systems for identifying financial fraud. In this paper, financial statements from 133 Greek companies listed in the Athens Stock Exchange over the period 2014 to 2019 are investigated, based on the fraud diamond theory. Financial data and corporate governance variables are used as inputs to data mining techniques to develop models that can identify patterns of irregularities in a company's financial reports. To this end, popular machine learning classification algorithms are employed in a novel multi‐label classification setting that not only identifies fraudulent cases but also considers the nature of the auditors' comments. The results indicate that the proposed multi‐label approach provides enhanced results compared to binary classification algorithms, avoiding inconsistent outputs with respect to the existence of different forms of manipulation of financial statements.

Suggested Citation

  • Maria Tragouda & Michalis Doumpos & Constantin Zopounidis, 2024. "Identification of fraudulent financial statements through a multi‐label classification approach," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 31(2), June.
  • Handle: RePEc:wly:isacfm:v:31:y:2024:i:2:n:e1564
    DOI: 10.1002/isaf.1564
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/isaf.1564
    Download Restriction: no

    File URL: https://libkey.io/10.1002/isaf.1564?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yang Bao & Bin Ke & Bin Li & Y. Julia Yu & Jie Zhang, 2020. "Detecting Accounting Fraud in Publicly Traded U.S. Firms Using a Machine Learning Approach," Journal of Accounting Research, Wiley Blackwell, vol. 58(1), pages 199-235, March.
    2. Yi Wei & Jianguo Chen & Carolyn Wirth, 2017. "Detecting fraud in Chinese listed company balance sheets," Pacific Accounting Review, Emerald Group Publishing Limited, vol. 29(3), pages 356-379, August.
    3. Zhang, Yi & Hu, Ailing & Wang, Jiahua & Zhang, Yaojie, 2022. "Detection of fraud statement based on word vector: Evidence from financial companies in China," Finance Research Letters, Elsevier, vol. 46(PB).
    4. Artem Bequé & Kristof Coussement & Ross Gayler & Stefan Lessmann, 2017. "Approaches for credit scorecard calibration: An empirical analysis," Post-Print hal-01745262, HAL.
    5. Ch. Spathis & M. Doumpos & C. Zopounidis, 2002. "Detecting falsified financial statements: a comparative study using multicriteria analysis and multivariate statistical techniques," European Accounting Review, Taylor & Francis Journals, vol. 11(3), pages 509-535.
    6. Kangan Sayal & Gurparkash Singh, 2020. "Investigating the role of theory of planned behavior and Machiavellianism in earnings management intentions," Accounting Research Journal, Emerald Group Publishing Limited, vol. 33(6), pages 653-668, September.
    7. Neda Abdelhamid & Arun Padmavathy & David Peebles & Fadi Thabtah & Daymond Goulder-Horobin, 2020. "Data Imbalance in Autism Pre-Diagnosis Classification Systems: An Experimental Study," Journal of Information & Knowledge Management (JIKM), World Scientific Publishing Co. Pte. Ltd., vol. 19(01), pages 1-16, March.
    8. Joseph V. Carcello & Albert L. Nagy, 2004. "Client size, auditor specialization and fraudulent financial reporting," Managerial Auditing Journal, Emerald Group Publishing Limited, vol. 19(5), pages 651-668, June.
    9. Dimitrios Kydros & Michail Pazarskis & Athanasia Karakitsiou, 2022. "A framework for identifying the falsified financial statements using network textual analysis: a general model and the Greek example," Annals of Operations Research, Springer, vol. 316(1), pages 513-527, September.
    10. James L. Bierstaker & Richard G. Brody & Carl Pacini, 2006. "Accountants' perceptions regarding fraud detection and prevention methods," Managerial Auditing Journal, Emerald Group Publishing Limited, vol. 21(5), pages 520-535, June.
    11. Karpoff, Jonathan M., 2021. "The future of financial fraud," Journal of Corporate Finance, Elsevier, vol. 66(C).
    12. Gray, Glen L. & Debreceny, Roger S., 2014. "A taxonomy to guide research on the application of data mining to fraud detection in financial statement audits," International Journal of Accounting Information Systems, Elsevier, vol. 15(4), pages 357-380.
    13. Arjan Reurink, 2018. "Financial Fraud: A Literature Review," Journal of Economic Surveys, Wiley Blackwell, vol. 32(5), pages 1292-1325, December.
    14. Kurt M. Fanning & Kenneth O. Cogger, 1998. "Neural network detection of management fraud using published financial data," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 7(1), pages 21-41, March.
    15. Maria Krambia‐Kapardis & Chris Christodoulou & Michalis Agathocleous, 2010. "Neural networks: the panacea in fraud detection?," Managerial Auditing Journal, Emerald Group Publishing Limited, vol. 25(7), pages 659-678, July.
    16. Patricia M. Dechow & Weili Ge & Chad R. Larson & Richard G. Sloan, 2011. "Predicting Material Accounting Misstatements," Contemporary Accounting Research, John Wiley & Sons, vol. 28(1), pages 17-82, March.
    17. Christian Lohmann & Thorsten Ohliger, 2019. "The total cost of misclassification in credit scoring: A comparison of generalized linear models and generalized additive models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 38(5), pages 375-389, August.
    18. Chen, Gongmeng & Firth, Michael & Gao, Daniel N. & Rui, Oliver M., 2006. "Ownership structure, corporate governance, and fraud: Evidence from China," Journal of Corporate Finance, Elsevier, vol. 12(3), pages 424-448, June.
    19. Fen‐May Liou, 2008. "Fraudulent financial reporting detection and business failure prediction models: a comparison," Managerial Auditing Journal, Emerald Group Publishing Limited, vol. 23(7), pages 650-662, July.
    20. Mark Cecchini & Haldun Aytug & Gary J. Koehler & Praveen Pathak, 2010. "Detecting Management Fraud in Public Companies," Management Science, INFORMS, vol. 56(7), pages 1146-1160, July.
    21. Firth, Michael & Rui, Oliver M. & Wu, Wenfeng, 2011. "Cooking the books: Recipes and costs of falsified financial statements in China," Journal of Corporate Finance, Elsevier, vol. 17(2), pages 371-390, April.
    22. Allen H. Huang & Reuven Lehavy & Amy Y. Zang & Rong Zheng, 2018. "Analyst Information Discovery and Interpretation Roles: A Topic Modeling Approach," Management Science, INFORMS, vol. 64(6), pages 2833-2855, June.
    23. Zhou, Fangzhao & Zhang, Zenan & Yang, Jun & Su, Yunpeng & An, Yunbi, 2018. "Delisting pressure, executive compensation, and corporate fraud: Evidence from China," Pacific-Basin Finance Journal, Elsevier, vol. 48(C), pages 17-34.
    24. Normah Omar & Zulaikha ‘Amirah Johari & Malcolm Smith, 2017. "Predicting fraudulent financial reporting using artificial neural network," Journal of Financial Crime, Emerald Group Publishing Limited, vol. 24(2), pages 362-387, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Achakzai, Muhammad Atif Khan & Peng, Juan, 2023. "Detecting financial statement fraud using dynamic ensemble machine learning," International Review of Financial Analysis, Elsevier, vol. 89(C).
    2. Xin Xu & Feng Xiong & Zhe An, 2023. "Using Machine Learning to Predict Corporate Fraud: Evidence Based on the GONE Framework," Journal of Business Ethics, Springer, vol. 186(1), pages 137-158, August.
    3. Elias Zavitsanos & Dimitris Mavroeidis & Konstantinos Bougiatiotis & Eirini Spyropoulou & Lefteris Loukas & Georgios Paliouras, 2023. "Financial misstatement detection: a realistic evaluation," Papers 2305.17457, arXiv.org.
    4. Yunchuan Sun & Xiaoping Zeng & Ying Xu & Hong Yue & Xipu Yu, 2024. "An intelligent detecting model for financial frauds in Chinese A‐share market," Economics and Politics, Wiley Blackwell, vol. 36(2), pages 1110-1136, July.
    5. Abdullah Albizri & Deniz Appelbaum & Nicholas Rizzotto, 2019. "Evaluation of financial statements fraud detection research: a multi-disciplinary analysis," International Journal of Disclosure and Governance, Palgrave Macmillan, vol. 16(4), pages 206-241, December.
    6. Li, Jing & Li, Nan & Xia, Tongshui & Guo, Jinjin, 2023. "Textual analysis and detection of financial fraud: Evidence from Chinese manufacturing firms," Economic Modelling, Elsevier, vol. 126(C).
    7. Md Jahidur Rahman & Hongtao Zhu, 2023. "Predicting accounting fraud using imbalanced ensemble learning classifiers – evidence from China," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 63(3), pages 3455-3486, September.
    8. Bolin Liao & Zhendai Huang & Xinwei Cao & Jianfeng Li, 2022. "Adopting Nonlinear Activated Beetle Antennae Search Algorithm for Fraud Detection of Public Trading Companies: A Computational Finance Approach," Mathematics, MDPI, vol. 10(13), pages 1-14, June.
    9. Xiaowei Chen & Cong Zhai, 2023. "Bagging or boosting? Empirical evidence from financial statement fraud detection," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 63(5), pages 5093-5142, December.
    10. Zhang, Chanyuan (Abigail) & Cho, Soohyun & Vasarhelyi, Miklos, 2022. "Explainable Artificial Intelligence (XAI) in auditing," International Journal of Accounting Information Systems, Elsevier, vol. 46(C).
    11. Zhou, Ying & Li, Haoran & Xiao, Zhi & Qiu, Jing, 2023. "A user-centered explainable artificial intelligence approach for financial fraud detection," Finance Research Letters, Elsevier, vol. 58(PA).
    12. Achakzai, Muhammad Atif Khan & Juan, Peng, 2022. "Using machine learning Meta-Classifiers to detect financial frauds," Finance Research Letters, Elsevier, vol. 48(C).
    13. Yang Bao & Bin Ke & Bin Li & Y. Julia Yu & Jie Zhang, 2021. "A Response to "Critique of an Article on Machine Learning in the Detection of Accounting Fraud"," Econ Journal Watch, Econ Journal Watch, vol. 18(1), pages 1-71–78, March.
    14. Joanna Wyrobek & Lukasz Poplawski & Marcin Surowka, 2020. "Identification of a Fraudulent Organizational Culture in Enterprises Listed in Warsaw Stock Exchange," European Research Studies Journal, European Research Studies Journal, vol. 0(Special 2), pages 622-637.
    15. Rahman, Md Jahidur & Zhu, Hongtao, 2024. "Detecting accounting fraud in family firms: Evidence from machine learning approaches," Advances in accounting, Elsevier, vol. 64(C).
    16. Laure Batz, 2023. "Financial market enforcement in France," European Journal of Law and Economics, Springer, vol. 55(3), pages 409-468, June.
    17. Haß, Lars Helge & Müller, Maximilian A. & Vergauwe, Skrålan, 2015. "Tournament incentives and corporate fraud," Journal of Corporate Finance, Elsevier, vol. 34(C), pages 251-267.
    18. Chen, Fengwen & Wang, Bing & Wang, Wei & Hu, Chen, 2024. "The secret of imitating wrongdoing: Accidental or deliberate," Research in International Business and Finance, Elsevier, vol. 69(C).
    19. Liu, Chenyong & Ryan, David & Lin, Guoyu & Xu, Chunhao, 2023. "No rose without a thorn: Corporate teamwork culture and financial statement misconduct," Journal of Behavioral and Experimental Finance, Elsevier, vol. 37(C).
    20. Lukui Huang & Alan Abrahams & Peter Ractham, 2022. "Enhanced financial fraud detection using cost‐sensitive cascade forest with missing value imputation," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 29(3), pages 133-155, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:isacfm:v:31:y:2024:i:2:n:e1564. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.interscience.wiley.com/jpages/1099-1174/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.