IDEAS home Printed from https://ideas.repec.org/a/eee/gamebe/v132y2022icp305-315.html
   My bibliography  Save this article

On pure-strategy Nash equilibria in large games

Author

Listed:
  • Wu, Bin

Abstract

A general condition called “coarser traits” is introduced and shown to be necessary and sufficient for the idealized limit property of large games with traits. Moreover, we illustrate the minimality of the “coarser traits” condition by showing its necessity in deriving the existence of pure-strategy Nash equilibria in large games with traits.

Suggested Citation

  • Wu, Bin, 2022. "On pure-strategy Nash equilibria in large games," Games and Economic Behavior, Elsevier, vol. 132(C), pages 305-315.
  • Handle: RePEc:eee:gamebe:v:132:y:2022:i:c:p:305-315
    DOI: 10.1016/j.geb.2021.12.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0899825622000021
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.geb.2021.12.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Qiao, Lei & Yu, Haomiao & Zhang, Zhixiang, 2016. "On the closed-graph property of the Nash equilibrium correspondence in a large game: A complete characterization," Games and Economic Behavior, Elsevier, vol. 99(C), pages 89-98.
    2. Podczeck, Konrad, 2008. "On the convexity and compactness of the integral of a Banach space valued correspondence," Journal of Mathematical Economics, Elsevier, vol. 44(7-8), pages 836-852, July.
    3. He, Wei & Sun, Yeneng, 2019. "Pure-strategy equilibria in Bayesian games," Journal of Economic Theory, Elsevier, vol. 180(C), pages 11-49.
    4. Noguchi, Mitsunori, 2009. "Existence of Nash equilibria in large games," Journal of Mathematical Economics, Elsevier, vol. 45(1-2), pages 168-184, January.
    5. Khan, M. Ali & Rath, Kali P. & Sun, Yeneng & Yu, Haomiao, 2013. "Large games with a bio-social typology," Journal of Economic Theory, Elsevier, vol. 148(3), pages 1122-1149.
    6. George A. Akerlof & Rachel E. Kranton, 2000. "Economics and Identity," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 115(3), pages 715-753.
    7. Rath, Kali P. & Yeneng Sun & Shinji Yamashige, 1995. "The nonexistence of symmetric equilibria in anonymous games with compact action spaces," Journal of Mathematical Economics, Elsevier, vol. 24(4), pages 331-346.
    8. Khan, M. Ali & Rath, Kali P. & Yu, Haomiao & Zhang, Yongchao, 2013. "Large distributional games with traits," Economics Letters, Elsevier, vol. 118(3), pages 502-505.
    9. Wooders, Myrna & Cartwright, Edward & Selten, Reinhard, 2006. "Behavioral conformity in games with many players," Games and Economic Behavior, Elsevier, vol. 57(2), pages 347-360, November.
    10. Khan, M. Ali & Sun, Yeneng, 2002. "Non-cooperative games with many players," Handbook of Game Theory with Economic Applications, in: R.J. Aumann & S. Hart (ed.), Handbook of Game Theory with Economic Applications, edition 1, volume 3, chapter 46, pages 1761-1808, Elsevier.
    11. Carmona, Guilherme & Podczeck, Konrad, 2021. "Strict pure strategy Nash equilibria in large finite-player games," Theoretical Economics, Econometric Society, vol. 16(3), July.
    12. Khan, M. Ali & Sun, Yeneng, 1999. "Non-cooperative games on hyperfinite Loeb spaces1," Journal of Mathematical Economics, Elsevier, vol. 31(4), pages 455-492, May.
    13. Carmona, Guilherme & Podczeck, Konrad, 2020. "Pure strategy Nash equilibria of large finite-player games and their relationship to non-atomic games," Journal of Economic Theory, Elsevier, vol. 187(C).
    14. Konrad Podczeck, 2009. "On purification of measure-valued maps," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 38(2), pages 399-418, February.
    15. He, Wei & Sun, Xiang & Sun, Yeneng, 2017. "Modeling infinitely many agents," Theoretical Economics, Econometric Society, vol. 12(2), May.
    16. Wei He & Yeneng Sun, 2018. "Conditional expectation of correspondences and economic applications," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 66(2), pages 265-299, August.
    17. Richard McLean & Andrew Postlewaite, 2002. "Informational Size and Incentive Compatibility," Econometrica, Econometric Society, vol. 70(6), pages 2421-2453, November.
    18. Carmona, Guilherme & Podczeck, Konrad, 2014. "Existence of Nash equilibrium in games with a measure space of players and discontinuous payoff functions," Journal of Economic Theory, Elsevier, vol. 152(C), pages 130-178.
    19. Sun, Yeneng & Yannelis, Nicholas C., 2007. "Perfect competition in asymmetric information economies: compatibility of efficiency and incentives," Journal of Economic Theory, Elsevier, vol. 134(1), pages 175-194, May.
    20. Rashid, Salim, 1983. "Equilibrium points of non-atomic games : Asymptotic results," Economics Letters, Elsevier, vol. 12(1), pages 7-10.
    21. Qiao, Lei & Yu, Haomiao, 2014. "On the space of players in idealized limit games," Journal of Economic Theory, Elsevier, vol. 153(C), pages 177-190.
    22. McLean, Richard & Postlewaite, Andrew, 2005. "Core convergence with asymmetric information," Games and Economic Behavior, Elsevier, vol. 50(1), pages 58-78, January.
    23. Ehud Kalai, 2004. "Large Robust Games," Econometrica, Econometric Society, vol. 72(6), pages 1631-1665, November.
    24. Sun, Xiang & Sun, Yeneng & Yu, Haomiao, 2020. "The individualistic foundation of equilibrium distribution," Journal of Economic Theory, Elsevier, vol. 189(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qiao, Lei & Yu, Haomiao & Zhang, Zhixiang, 2016. "On the closed-graph property of the Nash equilibrium correspondence in a large game: A complete characterization," Games and Economic Behavior, Elsevier, vol. 99(C), pages 89-98.
    2. He, Wei & Sun, Xiang & Sun, Yeneng, 2017. "Modeling infinitely many agents," Theoretical Economics, Econometric Society, vol. 12(2), May.
    3. Khan, M. Ali & Rath, Kali P. & Sun, Yeneng & Yu, Haomiao, 2013. "Large games with a bio-social typology," Journal of Economic Theory, Elsevier, vol. 148(3), pages 1122-1149.
    4. He, Wei & Sun, Yeneng, 2022. "Conditional expectation of Banach valued correspondences and economic applications," Journal of Mathematical Economics, Elsevier, vol. 101(C).
    5. Fu, Haifeng & Wu, Bin, 2019. "Characterization of Nash equilibria of large games," Journal of Mathematical Economics, Elsevier, vol. 85(C), pages 46-51.
    6. Carmona, Guilherme & Podczeck, Konrad, 2020. "Pure strategy Nash equilibria of large finite-player games and their relationship to non-atomic games," Journal of Economic Theory, Elsevier, vol. 187(C).
    7. Khan, Mohammed Ali & Rath, Kali P. & Yu, Haomiao & Zhang, Yongchao, 2017. "On the equivalence of large individualized and distributionalized games," Theoretical Economics, Econometric Society, vol. 12(2), May.
    8. Carmona, Guilherme & Podczeck, Konrad, 2009. "On the existence of pure-strategy equilibria in large games," Journal of Economic Theory, Elsevier, vol. 144(3), pages 1300-1319, May.
    9. Sun, Xiang & Sun, Yeneng & Yu, Haomiao, 2020. "The individualistic foundation of equilibrium distribution," Journal of Economic Theory, Elsevier, vol. 189(C).
    10. Chen, Enxian & Qiao, Lei & Sun, Xiang & Sun, Yeneng, 2022. "Robust perfect equilibrium in large games," Journal of Economic Theory, Elsevier, vol. 201(C).
    11. Fang, Chuyi & Wu, Bin, 2019. "Socially-maximal Nash equilibrium distributions in large distributional games," Economics Letters, Elsevier, vol. 175(C), pages 40-42.
    12. Qiao, Lei & Yu, Haomiao, 2014. "On the space of players in idealized limit games," Journal of Economic Theory, Elsevier, vol. 153(C), pages 177-190.
    13. Fu, Haifeng & Wu, Bin, 2018. "On the characterization of Nash equilibrium action distributions of large distributional games," Economics Letters, Elsevier, vol. 168(C), pages 82-84.
    14. Balbus, Lukasz & Dziewulski, Pawel & Reffett, Kevin & Wozny, Lukasz, 2022. "Markov distributional equilibrium dynamics in games with complementarities and no aggregate risk," Theoretical Economics, Econometric Society, vol. 17(2), May.
    15. Wei He & Yeneng Sun, 2018. "Conditional expectation of correspondences and economic applications," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 66(2), pages 265-299, August.
    16. Edward Cartwright & Myrna Wooders, 2009. "On equilibrium in pure strategies in games with many players," International Journal of Game Theory, Springer;Game Theory Society, vol. 38(1), pages 137-153, March.
    17. Sun, Xiang & Zeng, Yishu, 2020. "Perfect and proper equilibria in large games," Games and Economic Behavior, Elsevier, vol. 119(C), pages 288-308.
    18. Jianwei Wang & Yongchao Zhang, 2012. "Purification, saturation and the exact law of large numbers," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 50(3), pages 527-545, August.
    19. Wei He & Xiang Sun & Yeneng Sun & Yishu Zeng, 2021. "Characterization of equilibrium existence and purification in general Bayesian games," Papers 2106.08563, arXiv.org.
    20. Jian Yang, 2017. "A link between sequential semi-anonymous nonatomic games and their large finite counterparts," International Journal of Game Theory, Springer;Game Theory Society, vol. 46(2), pages 383-433, May.

    More about this item

    Keywords

    Large game with traits; Coarser traits; Idealized limit property; Nash equilibrium; Nowhere equivalence;
    All these keywords.

    JEL classification:

    • C60 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - General
    • C62 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Existence and Stability Conditions of Equilibrium
    • C72 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Noncooperative Games

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:gamebe:v:132:y:2022:i:c:p:305-315. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/622836 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.