IDEAS home Printed from https://ideas.repec.org/a/spr/joecth/v38y2009i2p399-418.html
   My bibliography  Save this article

On purification of measure-valued maps

Author

Listed:
  • Konrad Podczeck

Abstract

No abstract is available for this item.

Suggested Citation

  • Konrad Podczeck, 2009. "On purification of measure-valued maps," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 38(2), pages 399-418, February.
  • Handle: RePEc:spr:joecth:v:38:y:2009:i:2:p:399-418
    DOI: 10.1007/s00199-007-0319-3
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00199-007-0319-3
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s00199-007-0319-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Paul R. Milgrom & Robert J. Weber, 1985. "Distributional Strategies for Games with Incomplete Information," Mathematics of Operations Research, INFORMS, vol. 10(4), pages 619-632, November.
    2. Nicholas Yannelis, 2009. "Debreu’s social equilibrium theorem with asymmetric information and a continuum of agents," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 38(2), pages 419-432, February.
    3. M. Khan & Kali Rath & Yeneng Sun, 2006. "The Dvoretzky-Wald-Wolfowitz theorem and purification in atomless finite-action games," International Journal of Game Theory, Springer;Game Theory Society, vol. 34(1), pages 91-104, April.
    4. Mas-Colell, Andreu, 1984. "On a theorem of Schmeidler," Journal of Mathematical Economics, Elsevier, vol. 13(3), pages 201-206, December.
    5. Roy Radner & Robert W. Rosenthal, 1982. "Private Information and Pure-Strategy Equilibria," Mathematics of Operations Research, INFORMS, vol. 7(3), pages 401-409, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Khan, M. Ali & Rath, Kali P. & Sun, Yeneng & Yu, Haomiao, 2013. "Large games with a bio-social typology," Journal of Economic Theory, Elsevier, vol. 148(3), pages 1122-1149.
    2. Grant, Simon & Meneghel, Idione & Tourky, Rabee, 2013. "Savage Games: A Theory of Strategic Interaction with Purely Subjective Uncertainty," Risk and Sustainable Management Group Working Papers 151501, University of Queensland, School of Economics.
    3. Michael Greinecker & Konrad Podczeck, 2015. "Purification and roulette wheels," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 58(2), pages 255-272, February.
    4. Fu, Haifeng & Yu, Haomiao, 2015. "Pareto-undominated and socially-maximal equilibria in non-atomic games," Journal of Mathematical Economics, Elsevier, vol. 58(C), pages 7-15.
    5. Jianwei Wang & Yongchao Zhang, 2012. "Purification, saturation and the exact law of large numbers," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 50(3), pages 527-545, August.
    6. Ennio Bilancini & Leonardo Boncinelli, 2016. "Strict Nash equilibria in non-atomic games with strict single crossing in players (or types) and actions," Economic Theory Bulletin, Springer;Society for the Advancement of Economic Theory (SAET), vol. 4(1), pages 95-109, April.
    7. Fu, Haifeng & Yu, Haomiao, 2018. "Pareto refinements of pure-strategy equilibria in games with public and private information," Journal of Mathematical Economics, Elsevier, vol. 79(C), pages 18-26.
    8. Wei He & Xiang Sun & Yeneng Sun & Yishu Zeng, 2021. "Characterization of equilibrium existence and purification in general Bayesian games," Papers 2106.08563, arXiv.org.
    9. Khan, M. Ali & Sun, Yeneng, 1999. "Non-cooperative games on hyperfinite Loeb spaces1," Journal of Mathematical Economics, Elsevier, vol. 31(4), pages 455-492, May.
    10. Haifeng Fu, 2008. "Mixed-strategy equilibria and strong purification for games with private and public information," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 37(3), pages 521-532, December.
    11. , & , P. & , & ,, 2015. "Strategic uncertainty and the ex-post Nash property in large games," Theoretical Economics, Econometric Society, vol. 10(1), January.
    12. Beißner, Patrick & Khan, M. Ali, 2019. "On Hurwicz–Nash equilibria of non-Bayesian games under incomplete information," Games and Economic Behavior, Elsevier, vol. 115(C), pages 470-490.
    13. Edward Cartwright & Myrna Wooders, 2009. "On equilibrium in pure strategies in games with many players," International Journal of Game Theory, Springer;Game Theory Society, vol. 38(1), pages 137-153, March.
    14. Khan, M. Ali & Rath, Kali P. & Sun, Yeneng, 1999. "On a private information game without pure strategy equilibria1," Journal of Mathematical Economics, Elsevier, vol. 31(3), pages 341-359, April.
    15. Carmona, Guilherme & Podczeck, Konrad, 2014. "Existence of Nash equilibrium in games with a measure space of players and discontinuous payoff functions," Journal of Economic Theory, Elsevier, vol. 152(C), pages 130-178.
    16. M. Ali Khan & Yongchao Zhang, 2017. "Existence of pure-strategy equilibria in Bayesian games: a sharpened necessity result," International Journal of Game Theory, Springer;Game Theory Society, vol. 46(1), pages 167-183, March.
    17. Khan, M. Ali & Sagara, Nobusumi, 2016. "Relaxed large economies with infinite-dimensional commodity spaces: The existence of Walrasian equilibria," Journal of Mathematical Economics, Elsevier, vol. 67(C), pages 95-107.
    18. He, Wei & Sun, Yeneng, 2019. "Pure-strategy equilibria in Bayesian games," Journal of Economic Theory, Elsevier, vol. 180(C), pages 11-49.
    19. Sun, Xiang & Zeng, Yishu, 2020. "Perfect and proper equilibria in large games," Games and Economic Behavior, Elsevier, vol. 119(C), pages 288-308.
    20. Fu, Haifeng & Sun, Yeneng & Yannelis, Nicholas C. & Zhang, Zhixiang, 2007. "Pure strategy equilibria in games with private and public information," Journal of Mathematical Economics, Elsevier, vol. 43(5), pages 523-531, June.

    More about this item

    Keywords

    Games; Purification; Measure-valued maps; C60; C70;
    All these keywords.

    JEL classification:

    • C60 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - General
    • C70 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joecth:v:38:y:2009:i:2:p:399-418. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.