IDEAS home Printed from https://ideas.repec.org/a/eee/ecolet/v168y2018icp82-84.html
   My bibliography  Save this article

On the characterization of Nash equilibrium action distributions of large distributional games

Author

Listed:
  • Fu, Haifeng
  • Wu, Bin

Abstract

In a large distributional game, we show that an action distribution is a Nash equilibrium action distribution if and only if for any subset of actions, the proportion of players playing actions within the subset is no more than the proportion of players having their best response in it. We also show that given an action set, a symmetric Nash equilibrium action distribution in every atomless large distributional game with the given action set can be characterized if and only if the action set is at most countable.

Suggested Citation

  • Fu, Haifeng & Wu, Bin, 2018. "On the characterization of Nash equilibrium action distributions of large distributional games," Economics Letters, Elsevier, vol. 168(C), pages 82-84.
  • Handle: RePEc:eee:ecolet:v:168:y:2018:i:c:p:82-84
    DOI: 10.1016/j.econlet.2018.04.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0165176518301319
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.econlet.2018.04.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Qiao, Lei & Yu, Haomiao & Zhang, Zhixiang, 2016. "On the closed-graph property of the Nash equilibrium correspondence in a large game: A complete characterization," Games and Economic Behavior, Elsevier, vol. 99(C), pages 89-98.
    2. R.J. Aumann & S. Hart (ed.), 2002. "Handbook of Game Theory with Economic Applications," Handbook of Game Theory with Economic Applications, Elsevier, edition 1, volume 3, number 3.
    3. Noguchi, Mitsunori, 2009. "Existence of Nash equilibria in large games," Journal of Mathematical Economics, Elsevier, vol. 45(1-2), pages 168-184, January.
    4. Khan, M. Ali & Yeneng, Sun, 1995. "Pure strategies in games with private information," Journal of Mathematical Economics, Elsevier, vol. 24(7), pages 633-653.
    5. Rath, Kali P. & Yeneng Sun & Shinji Yamashige, 1995. "The nonexistence of symmetric equilibria in anonymous games with compact action spaces," Journal of Mathematical Economics, Elsevier, vol. 24(4), pages 331-346.
    6. Khan, M. Ali & Rath, Kali P. & Yu, Haomiao & Zhang, Yongchao, 2013. "Large distributional games with traits," Economics Letters, Elsevier, vol. 118(3), pages 502-505.
    7. Khan, M. Ali & Sun, Yeneng, 2002. "Non-cooperative games with many players," Handbook of Game Theory with Economic Applications, in: R.J. Aumann & S. Hart (ed.), Handbook of Game Theory with Economic Applications, edition 1, volume 3, chapter 46, pages 1761-1808, Elsevier.
    8. Mas-Colell, Andreu, 1984. "On a theorem of Schmeidler," Journal of Mathematical Economics, Elsevier, vol. 13(3), pages 201-206, December.
    9. Khan, M. Ali & Sun, Yeneng, 1995. "Extremal structures and symmetric equilibria with countable actions," Journal of Mathematical Economics, Elsevier, vol. 24(3), pages 239-248.
    10. Charalambos D. Aliprantis & Kim C. Border, 2006. "Infinite Dimensional Analysis," Springer Books, Springer, edition 0, number 978-3-540-29587-7, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Khan, Mohammed Ali & Rath, Kali P. & Yu, Haomiao & Zhang, Yongchao, 2017. "On the equivalence of large individualized and distributionalized games," Theoretical Economics, Econometric Society, vol. 12(2), May.
    2. Fu, Haifeng & Wu, Bin, 2019. "Characterization of Nash equilibria of large games," Journal of Mathematical Economics, Elsevier, vol. 85(C), pages 46-51.
    3. Fang, Chuyi & Wu, Bin, 2019. "Socially-maximal Nash equilibrium distributions in large distributional games," Economics Letters, Elsevier, vol. 175(C), pages 40-42.
    4. Khan, M. Ali & Rath, Kali P. & Sun, Yeneng & Yu, Haomiao, 2013. "Large games with a bio-social typology," Journal of Economic Theory, Elsevier, vol. 148(3), pages 1122-1149.
    5. Wu, Bin, 2022. "On pure-strategy Nash equilibria in large games," Games and Economic Behavior, Elsevier, vol. 132(C), pages 305-315.
    6. Khan, M. Ali & Rath, Kali P. & Yu, Haomiao & Zhang, Yongchao, 2013. "Large distributional games with traits," Economics Letters, Elsevier, vol. 118(3), pages 502-505.
    7. Haomiao Yu, 2014. "Rationalizability in large games," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 55(2), pages 457-479, February.
    8. Askoura, Y., 2017. "On the core of normal form games with a continuum of players," Mathematical Social Sciences, Elsevier, vol. 89(C), pages 32-42.
    9. Carmona, Guilherme, 2008. "Large games with countable characteristics," Journal of Mathematical Economics, Elsevier, vol. 44(3-4), pages 344-347, February.
    10. Cerreia-Vioglio, Simone & Maccheroni, Fabio & Schmeidler, David, 2022. "Equilibria of nonatomic anonymous games," Games and Economic Behavior, Elsevier, vol. 135(C), pages 110-131.
    11. Youcef Askoura, 2019. "On the core of normal form games with a continuum of players : a correction," Papers 1903.09819, arXiv.org.
    12. Qiao, Lei & Yu, Haomiao & Zhang, Zhixiang, 2016. "On the closed-graph property of the Nash equilibrium correspondence in a large game: A complete characterization," Games and Economic Behavior, Elsevier, vol. 99(C), pages 89-98.
    13. Sun, Xiang & Sun, Yeneng & Yu, Haomiao, 2020. "The individualistic foundation of equilibrium distribution," Journal of Economic Theory, Elsevier, vol. 189(C).
    14. Fu, Haifeng & Yu, Haomiao, 2015. "Pareto-undominated and socially-maximal equilibria in non-atomic games," Journal of Mathematical Economics, Elsevier, vol. 58(C), pages 7-15.
    15. He, Wei & Sun, Xiang & Sun, Yeneng, 2017. "Modeling infinitely many agents," Theoretical Economics, Econometric Society, vol. 12(2), May.
    16. Fu, Haifeng & Xu, Ying & Zhang, Luyi, 2007. "Characterizing Pure-strategy Equilibria in Large Games," MPRA Paper 7514, University Library of Munich, Germany.
    17. Camacho, Carmen & Kamihigashi, Takashi & Sağlam, Çağrı, 2018. "Robust comparative statics for non-monotone shocks in large aggregative games," Journal of Economic Theory, Elsevier, vol. 174(C), pages 288-299.
    18. Lorenzo Rocco, 2007. "Anonymity in nonatomic games," International Review of Economics, Springer;Happiness Economics and Interpersonal Relations (HEIRS), vol. 54(2), pages 225-247, June.
    19. Jianwei Wang & Yongchao Zhang, 2012. "Purification, saturation and the exact law of large numbers," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 50(3), pages 527-545, August.
    20. Ennio Bilancini & Leonardo Boncinelli, 2016. "Strict Nash equilibria in non-atomic games with strict single crossing in players (or types) and actions," Economic Theory Bulletin, Springer;Society for the Advancement of Economic Theory (SAET), vol. 4(1), pages 95-109, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecolet:v:168:y:2018:i:c:p:82-84. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ecolet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.