IDEAS home Printed from https://ideas.repec.org/a/eee/forpol/v135y2022ics1389934121002720.html
   My bibliography  Save this article

A global analysis of the break-even prices to reduce atmospheric carbon dioxide via forest plantation and avoided deforestation

Author

Listed:
  • Chu, Long
  • Grafton, R. Quentin
  • Nguyen, Hai

Abstract

A cross-country assessment of the cost of carbon sequestration in the forest sector is needed for planning and achieving climate commitments, such as the Paris Agreement, at global, regional, national, or sectoral scales. We provide a global and bottom-up assessment of the break-even carbon price to undertake forest plantation and forest conservation at a country level for 166 nations. We construct a global dataset of key cost factors, examine their global distributions, and undertake a cross-country assessment of cost differences with alternative forest programs (plantation and conservation). Our bottom-up approach is also calibrated to sub-national case studies to investigate the average cost of forest carbon in Australian states and Canadian provinces. We find that the break-even carbon price varies by countries, locations within a country, forest programs and co-benefits. Our estimates provide an approximation of the cost-effectiveness of forest carbon sequestration relative to non-forest climate mitigation approaches.

Suggested Citation

  • Chu, Long & Grafton, R. Quentin & Nguyen, Hai, 2022. "A global analysis of the break-even prices to reduce atmospheric carbon dioxide via forest plantation and avoided deforestation," Forest Policy and Economics, Elsevier, vol. 135(C).
  • Handle: RePEc:eee:forpol:v:135:y:2022:i:c:s1389934121002720
    DOI: 10.1016/j.forpol.2021.102666
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1389934121002720
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.forpol.2021.102666?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. van Kooten, G. Cornelis, 2017. "Forest carbon offsets and carbon emissions trading: Problems of contracting," Forest Policy and Economics, Elsevier, vol. 75(C), pages 83-88.
    2. Mykola Gusti & Nicklas Forsell & Petr Havlik & Nikolay Khabarov & Florian Kraxner & Michael Obersteiner, 2019. "The sensitivity of the costs of reducing emissions from deforestation and degradation (REDD) to future socioeconomic drivers and its implications for mitigation policy design," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 24(6), pages 1123-1141, August.
    3. K. G. Austin & J. S. Baker & B. L. Sohngen & C. M. Wade & A. Daigneault & S. B. Ohrel & S. Ragnauth & A. Bean, 2020. "The economic costs of planting, preserving, and managing the world’s forests to mitigate climate change," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    4. Stephanie Roe & Charlotte Streck & Michael Obersteiner & Stefan Frank & Bronson Griscom & Laurent Drouet & Oliver Fricko & Mykola Gusti & Nancy Harris & Tomoko Hasegawa & Zeke Hausfather & Petr Havlík, 2019. "Contribution of the land sector to a 1.5 °C world," Nature Climate Change, Nature, vol. 9(11), pages 817-828, November.
    5. Kuosmanen, Timo & Zhou, Xun & Dai, Sheng, 2020. "How much climate policy has cost for OECD countries?," World Development, Elsevier, vol. 125(C).
    6. Francesco Fuso Nerini & Benjamin Sovacool & Nick Hughes & Laura Cozzi & Ellie Cosgrave & Mark Howells & Massimo Tavoni & Julia Tomei & Hisham Zerriffi & Ben Milligan, 2019. "Connecting climate action with other Sustainable Development Goals," Nature Sustainability, Nature, vol. 2(8), pages 674-680, August.
    7. Dan A. Smale & Thomas Wernberg & Eric C. J. Oliver & Mads Thomsen & Ben P. Harvey & Sandra C. Straub & Michael T. Burrows & Lisa V. Alexander & Jessica A. Benthuysen & Markus G. Donat & Ming Feng & Al, 2019. "Marine heatwaves threaten global biodiversity and the provision of ecosystem services," Nature Climate Change, Nature, vol. 9(4), pages 306-312, April.
    8. Dieter Helm, 2010. "Government failure, rent-seeking, and capture: the design of climate change policy," Oxford Review of Economic Policy, Oxford University Press and Oxford Review of Economic Policy Limited, vol. 26(2), pages 182-196, Summer.
    9. Marco Turco & Juan José Rosa-Cánovas & Joaquín Bedia & Sonia Jerez & Juan Pedro Montávez & Maria Carmen Llasat & Antonello Provenzale, 2018. "Exacerbated fires in Mediterranean Europe due to anthropogenic warming projected with non-stationary climate-fire models," Nature Communications, Nature, vol. 9(1), pages 1-9, December.
    10. Tavoni, Massimo & Sohngen, Brent & Bosetti, Valentina, 2007. "Forestry and the carbon market response to stabilize climate," Energy Policy, Elsevier, vol. 35(11), pages 5346-5353, November.
    11. Timilsina, Govinda R. & Sikharulidze, Anna & Karapoghosyan, Eduard & Shatvoryan, Suren, 2017. "Development of marginal abatement cost curves for the building sector in Armenia and Georgia," Energy Policy, Elsevier, vol. 108(C), pages 29-43.
    12. Mizan Khan & David Mfitumukiza & Saleemul Huq, 2020. "Capacity building for implementation of nationally determined contributions under the Paris Agreement," Climate Policy, Taylor & Francis Journals, vol. 20(4), pages 499-510, April.
    13. Jayant Sathaye, Willy Makundi, Larry Dale, Peter Chan, and Kenneth Andrasko, 2006. "GHG Mitigation Potential, Costs and Benefits in Global Forests: A Dynamic Partial Equilibrium Approach," The Energy Journal, International Association for Energy Economics, vol. 0(Special I), pages 127-162.
    14. Lukas Gudmundsson & Sonia I. Seneviratne & Xuebin Zhang, 2017. "Anthropogenic climate change detected in European renewable freshwater resources," Nature Climate Change, Nature, vol. 7(11), pages 813-816, November.
    15. Nicole Glanemann & Sven N. Willner & Anders Levermann, 2020. "Paris Climate Agreement passes the cost-benefit test," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
    16. Jonah Busch & Jens Engelmann & Susan C. Cook-Patton & Bronson W. Griscom & Timm Kroeger & Hugh Possingham & Priya Shyamsundar, 2019. "Potential for low-cost carbon dioxide removal through tropical reforestation," Nature Climate Change, Nature, vol. 9(6), pages 463-466, June.
    17. Brent Sohngen & Robert Mendelsohn, 2003. "An Optimal Control Model of Forest Carbon Sequestration," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 85(2), pages 448-457.
    18. Theresa Stahlke, 2020. "The impact of the Clean Development Mechanism on developing countries’ commitment to mitigate climate change and its implications for the future," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 25(1), pages 107-125, January.
    19. Christopher M. Taylor & Danijel Belušić & Françoise Guichard & Douglas J. Parker & Théo Vischel & Olivier Bock & Phil P. Harris & Serge Janicot & Cornelia Klein & Gérémy Panthou, 2017. "Frequency of extreme Sahelian storms tripled since 1982 in satellite observations," Nature, Nature, vol. 544(7651), pages 475-478, April.
    20. van Kooten, G. Cornelis, 2020. "How effective are forests in mitigating climate change?," Forest Policy and Economics, Elsevier, vol. 120(C).
    21. Hartman, Richard, 1976. "The Harvesting Decision When a Standing Forest Has Value," Economic Inquiry, Western Economic Association International, vol. 14(1), pages 52-58, March.
    22. Costanza, Robert & d'Arge, Ralph & de Groot, Rudolf & Farber, Stephen & Grasso, Monica & Hannon, Bruce & Limburg, Karin & Naeem, Shahid & O'Neill, Robert V. & Paruelo, Jose, 1998. "The value of the world's ecosystem services and natural capital," Ecological Economics, Elsevier, vol. 25(1), pages 3-15, April.
    23. S. Wunder & R. Brouwer & S. Engel & D. Ezzine-de-Blas & R. Muradian & U. Pascual & R. Pinto, 2018. "From principles to practice in paying for nature’s services," Nature Sustainability, Nature, vol. 1(3), pages 145-150, March.
    24. Luis Mundaca T & Mathilde Mansoz & Lena Neij & Govinda R. Timilsina, 2013. "Transaction costs analysis of low-carbon technologies," Climate Policy, Taylor & Francis Journals, vol. 13(4), pages 490-513, July.
    25. Münnich Vass, Miriam, 2017. "Renewable energies cannot compete with forest carbon sequestration to cost-efficiently meet the EU carbon target for 2050," Renewable Energy, Elsevier, vol. 107(C), pages 164-180.
    26. Keenan, Rodney J. & Pozza, Greg & Fitzsimons, James A., 2019. "Ecosystem services in environmental policy: Barriers and opportunities for increased adoption," Ecosystem Services, Elsevier, vol. 38(C), pages 1-1.
    27. Adrien Vogt-Schilb & St�phane Hallegatte & Christophe de Gouvello, 2015. "Marginal abatement cost curves and the quality of emission reductions: a case study on Brazil," Climate Policy, Taylor & Francis Journals, vol. 15(6), pages 703-723, November.
    28. Quirin Schiermeier, 2018. "Clear signs of global warming will hit poorer countries first," Nature, Nature, vol. 556(7702), pages 415-416, April.
    29. Pour, Nasim & Webley, Paul A. & Cook, Peter J., 2018. "Opportunities for application of BECCS in the Australian power sector," Applied Energy, Elsevier, vol. 224(C), pages 615-635.
    30. Chu, Long & Quentin Grafton, R. & Keenan, Rodney, 2019. "Increasing Conservation Efficiency While Maintaining Distributive Goals With the Payment for Environmental Services," Ecological Economics, Elsevier, vol. 156(C), pages 202-210.
    31. Robert O. Keohane & David G. Victor, 2016. "Cooperation and discord in global climate policy," Nature Climate Change, Nature, vol. 6(6), pages 570-575, June.
    32. Reed, William J., 1984. "The effects of the risk of fire on the optimal rotation of a forest," Journal of Environmental Economics and Management, Elsevier, vol. 11(2), pages 180-190, June.
    33. Cameron Hepburn & Ella Adlen & John Beddington & Emily A. Carter & Sabine Fuss & Niall Mac Dowell & Jan C. Minx & Pete Smith & Charlotte K. Williams, 2019. "The technological and economic prospects for CO2 utilization and removal," Nature, Nature, vol. 575(7781), pages 87-97, November.
    34. Robert N. Stavins, 1999. "The Costs of Carbon Sequestration: A Revealed-Preference Approach," American Economic Review, American Economic Association, vol. 89(4), pages 994-1009, September.
    35. W. Fichtner & S. Graehl & O. Rentz, 2003. "The impact of private investor's transaction costs on the cost effectiveness of project-based Kyoto mechanisms," Climate Policy, Taylor & Francis Journals, vol. 3(3), pages 249-259, September.
    36. Susan C. Cook-Patton & Sara M. Leavitt & David Gibbs & Nancy L. Harris & Kristine Lister & Kristina J. Anderson-Teixeira & Russell D. Briggs & Robin L. Chazdon & Thomas W. Crowther & Peter W. Ellis & , 2020. "Mapping carbon accumulation potential from global natural forest regrowth," Nature, Nature, vol. 585(7826), pages 545-550, September.
    37. Neudert, Regina & Olschofsky, Konstantin & Kübler, Daniel & Prill, Laura & Köhl, Michael & Wätzold, Frank, 2018. "Opportunity costs of conserving a dry tropical forest under REDD+: The case of the spiny dry forest in southwestern Madagascar," Forest Policy and Economics, Elsevier, vol. 95(C), pages 102-114.
    38. Everard, Mark & Longhurst, James & Pontin, John & Stephenson, Wendy & Brooks, Joss, 2017. "Developed-developing world partnerships for sustainable development (2): An illustrative case for a payments for ecosystem services (PES) approach," Ecosystem Services, Elsevier, vol. 24(C), pages 253-260.
    39. Brent Sohngen, 2020. "Climate Change and Forests," Annual Review of Resource Economics, Annual Reviews, vol. 12(1), pages 23-43, October.
    40. Nicholas Stern, 2008. "The Economics of Climate Change," American Economic Review, American Economic Association, vol. 98(2), pages 1-37, May.
    41. Guo, Jinggang & Gong, Peichen, 2017. "The potential and cost of increasing forest carbon sequestration in Sweden," Journal of Forest Economics, Elsevier, vol. 29(PB), pages 78-86.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eriksson, Mathilda, 2020. "Afforestation and avoided deforestation in a multi-regional integrated assessment model," Ecological Economics, Elsevier, vol. 169(C).
    2. Miguel Riviere & Sylvain Caurla, 2020. "Representations of the Forest Sector in Economic Models [Les représentations du secteur forestier dans les modèles économiques]," Post-Print hal-03088084, HAL.
    3. Kooten, G. Cornelis Van, 2022. "The Impact of Carbon on Optimal Forest Rotation Ages: An Application to Coastal Forests in British Columbia," 2022 Annual Meeting, July 31-August 2, Anaheim, California 322612, Agricultural and Applied Economics Association.
    4. Couture, Stéphane & Reynaud, Arnaud, 2011. "Forest management under fire risk when forest carbon sequestration has value," Ecological Economics, Elsevier, vol. 70(11), pages 2002-2011, September.
    5. Asbjørn Aaheim & Rajiv Chaturvedi & Anitha Sagadevan, 2011. "Integrated modelling approaches to analysis of climate change impacts on forests and forest management," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 16(2), pages 247-266, February.
    6. Favero, Alice & Mendelsohn, Robert & Sohngen, Brent, 2016. "Carbon Storage and Bioenergy: Using Forests for Climate Mitigation," MITP: Mitigation, Innovation and Transformation Pathways 232215, Fondazione Eni Enrico Mattei (FEEM).
    7. Ovando, Paola & Caparrós, Alejandro, 2009. "Land use and carbon mitigation in Europe: A survey of the potentials of different alternatives," Energy Policy, Elsevier, vol. 37(3), pages 992-1003, March.
    8. Brunette, Marielle & Couture, Stéphane & Langlais, Eric, 2007. "Hedging Strategies in Forest Management," MPRA Paper 5228, University Library of Munich, Germany.
    9. Edwin Van Der Werf & Sonja Peterson, 2009. "Modeling linkages between climate policy and land use: an overview," Agricultural Economics, International Association of Agricultural Economists, vol. 40(5), pages 507-517, September.
    10. Niels ANGER & Jayant SATHAYE, 2008. "Reducing Deforestation and Trading Emissions: Carbon Market Impacts of post-Kyoto Climate Policies," EcoMod2008 23800003, EcoMod.
    11. Anger, Niels & Dixon, Alistair & Livengood, Erich, 2009. "Interactions of Reduced Deforestation and the Carbon Market: The Role of Market Regulations and Future Commitments," ZEW Discussion Papers 09-001, ZEW - Leibniz Centre for European Economic Research.
    12. Gren, Ing-Marie, 2024. "A trading market for uncertain carbon removal by land use in the EU," Forest Policy and Economics, Elsevier, vol. 159(C).
    13. Münnich Vass, Miriam, 2017. "Renewable energies cannot compete with forest carbon sequestration to cost-efficiently meet the EU carbon target for 2050," Renewable Energy, Elsevier, vol. 107(C), pages 164-180.
    14. Vass, Miriam Münnich & Elofsson, Katarina, 2016. "Is forest carbon sequestration at the expense of bioenergy and forest products cost-efficient in EU climate policy to 2050?," Journal of Forest Economics, Elsevier, vol. 24(C), pages 82-105.
    15. Susan C. Cook-Patton & C. Ronnie Drever & Bronson W. Griscom & Kelley Hamrick & Hamilton Hardman & Timm Kroeger & Pablo Pacheco & Shyla Raghav & Martha Stevenson & Chris Webb & Samantha Yeo & Peter W., 2021. "Protect, manage and then restore lands for climate mitigation," Nature Climate Change, Nature, vol. 11(12), pages 1027-1034, December.
    16. Xin Zhao & Bryan K. Mignone & Marshall A. Wise & Haewon C. McJeon, 2024. "Trade-offs in land-based carbon removal measures under 1.5 °C and 2 °C futures," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    17. Sathaye, Jayant A. & Anger, Niels, 2008. "Reducing Deforestation and Trading Emissions: Economic Implications for the post-Kyoto Carbon Market," ZEW Discussion Papers 08-016, ZEW - Leibniz Centre for European Economic Research.
    18. Alejandro Caparrós & David Zilberman, 2010. "Optimal carbon sequestration path when different biological or physical sequestration," Working Papers 1018, Instituto de Políticas y Bienes Públicos (IPP), CSIC.
    19. Michetti, Melania & Rosa, Renato, 2012. "Afforestation and timber management compliance strategies in climate policy. A computable general equilibrium analysis," Ecological Economics, Elsevier, vol. 77(C), pages 139-148.
    20. Susaeta, Andres & Chang, Sun Joseph & Carter, Douglas R. & Lal, Pankaj, 2014. "Economics of carbon sequestration under fluctuating economic environment, forest management and technological changes: An application to forest stands in the southern United States," Journal of Forest Economics, Elsevier, vol. 20(1), pages 47-64.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:forpol:v:135:y:2022:i:c:s1389934121002720. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/forpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.