IDEAS home Printed from https://ideas.repec.org/a/taf/tcpoxx/v13y2013i4p490-513.html
   My bibliography  Save this article

Transaction costs analysis of low-carbon technologies

Author

Listed:
  • Luis Mundaca T
  • Mathilde Mansoz
  • Lena Neij
  • Govinda R. Timilsina

Abstract

Transaction costs (TCs) must be taken into account when assessing the performance of policy instruments that create markets for the diffusion and commercialization of low-carbon technologies (LCTs). However, there are no comprehensive studies on the development and application of transaction cost analysis to LCTs. In this meta-analysis, a wide-ranging evaluation of TCs associated with energy efficiency, renewable energy, and carbon market technologies is provided. There is a plethora of different definitions of, and measurement techniques to estimate, TCs. There is wide variation in the quantitative estimates, which can be attributed to factors such as the definition used, data collection, quantification methods, the type and size of technologies, the regulatory frameworks, the complexity of transactions, and the maturity of policy instruments. It is concluded that TCs are highly specific to both LCTs and policy instruments and that a common methodological approach is needed to avoid misleading policy analysis of the extant and future assessments. Policy relevance Transaction costs (TCs) accrued by, for instance, the search for information, due diligence, monitoring and verification (M&V) activities, must be considered in the design, implementation, and assessment of policy instruments. Such costs can have a negative effect on the performance of policy instruments aimed at the diffusion and commercialization of low-carbon technologies. It is shown here that TC analysis is mostly technology and policy context-specific and hence that it is not advisable to make generalizations about sources and estimates. The nature and scale of TCs are likely to differ due to a variety of endogenous determinants (e.g. size and performance of technologies), exogenous drivers (e.g. regulatory policy frameworks), and methodological aspects (e.g. quantification techniques). Several measures and strategies have the potential to reduce TCs, including standardized full cost accounting systems, an ex ante M&V approach, project bundling, and streamlining of procedures.

Suggested Citation

  • Luis Mundaca T & Mathilde Mansoz & Lena Neij & Govinda R. Timilsina, 2013. "Transaction costs analysis of low-carbon technologies," Climate Policy, Taylor & Francis Journals, vol. 13(4), pages 490-513, July.
  • Handle: RePEc:taf:tcpoxx:v:13:y:2013:i:4:p:490-513
    DOI: 10.1080/14693062.2013.781452
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/14693062.2013.781452
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/14693062.2013.781452?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Global Energy Assessment Writing Team,, 2012. "Global Energy Assessment," Cambridge Books, Cambridge University Press, number 9780521182935, January.
    2. Global Energy Assessment Writing Team,, 2012. "Global Energy Assessment," Cambridge Books, Cambridge University Press, number 9781107005198, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ürge-Vorsatz, Diana & Kelemen, Agnes & Tirado-Herrero, Sergio & Thomas, Stefan & Thema, Johannes & Mzavanadze, Nora & Hauptstock, Dorothea & Suerkemper, Felix & Teubler, Jens & Gupta, Mukesh & Chatter, 2016. "Measuring multiple impacts of low-carbon energy options in a green economy context," Applied Energy, Elsevier, vol. 179(C), pages 1409-1426.
    2. Peter Heindl, 2017. "The impact of administrative transaction costs in the EU emissions trading system," Climate Policy, Taylor & Francis Journals, vol. 17(3), pages 314-329, April.
    3. Wolf Rogowski & Wolfram Elsner, 2021. "How economics can help mitigate climate change - a critical review and conceptual analysis of economic paradigms," Bremen Papers on Economics & Innovation 2106, University of Bremen, Faculty of Business Studies and Economics.
    4. Chu, Long & Grafton, R. Quentin & Nguyen, Hai, 2022. "A global analysis of the break-even prices to reduce atmospheric carbon dioxide via forest plantation and avoided deforestation," Forest Policy and Economics, Elsevier, vol. 135(C).
    5. Valentová, Michaela & Lízal, Lubomír & Knápek, Jaroslav, 2018. "Designing energy efficiency subsidy programmes: The factors of transaction costs," Energy Policy, Elsevier, vol. 120(C), pages 382-391.
    6. Ebrahimigharehbaghi, Shima & Qian, Queena K. & Meijer, Frits M. & Visscher, Henk J., 2019. "Unravelling Dutch homeowners' behaviour towards energy efficiency renovations: What drives and hinders their decision-making?," Energy Policy, Elsevier, vol. 129(C), pages 546-561.
    7. Pardalis, Georgios & Talmar, Madis & Keskin, Duygu, 2021. "To be or not to be: The organizational conditions for launching one-stop-shops for energy related renovations," Energy Policy, Elsevier, vol. 159(C).
    8. Spyridaki, Niki-Artemis & Banaka, Stefania & Flamos, Alexandros, 2016. "Evaluating public policy instruments in the Greek building sector," Energy Policy, Elsevier, vol. 88(C), pages 528-543.
    9. Strupeit, Lars, 2017. "An innovation system perspective on the drivers of soft cost reduction for photovoltaic deployment: The case of Germany," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 273-286.
    10. Lundmark, Robert, 2022. "Time-adjusted transaction costs for energy renovations for single-family house-owners," Energy Economics, Elsevier, vol. 114(C).
    11. Wen, Huwei & Liang, Weitao & Lee, Chien-Chiang, 2022. "Urban broadband infrastructure and green total-factor energy efficiency in China," Utilities Policy, Elsevier, vol. 79(C).
    12. Strupeit, Lars & Neij, Lena, 2017. "Cost dynamics in the deployment of photovoltaics: Insights from the German market for building-sited systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 948-960.
    13. Valentová, Michaela & Horák, Martin & Dvořáček, Lukáš, 2020. "Why transaction costs do not decrease over time? A case study of energy efficiency programmes in Czechia," Energy Policy, Elsevier, vol. 147(C).
    14. Hochman, Gal & Timilsina, Govinda R., 2017. "Energy efficiency barriers in commercial and industrial firms in Ukraine: An empirical analysis," Energy Economics, Elsevier, vol. 63(C), pages 22-30.
    15. Pablo-Romero, María del P. & Sánchez-Braza, Antonio, 2015. "Productive energy use and economic growth: Energy, physical and human capital relationships," Energy Economics, Elsevier, vol. 49(C), pages 420-429.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anne-Maree Dowd & Michelle Rodriguez & Talia Jeanneret, 2015. "Social Science Insights for the BioCCS Industry," Energies, MDPI, vol. 8(5), pages 1-19, May.
    2. Fankhauser, Samuel & Jotzo, Frank, 2017. "Economic growth and development with low-carbon energy," LSE Research Online Documents on Economics 86850, London School of Economics and Political Science, LSE Library.
    3. Tilmann Rave, 2013. "Innovationsindikatoren zum globalen Klimaschutz – FuE-Ausgaben und Patente," ifo Schnelldienst, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 66(15), pages 34-41, August.
    4. Daniel Moran & Richard Wood, 2014. "Convergence Between The Eora, Wiod, Exiobase, And Openeu'S Consumption-Based Carbon Accounts," Economic Systems Research, Taylor & Francis Journals, vol. 26(3), pages 245-261, September.
    5. Lykke E. Andersen & Luis Carlos Jemio, 2016. "Decentralization and poverty reduction in Bolivia: Challenges and opportunities," Development Research Working Paper Series 01/2016, Institute for Advanced Development Studies.
    6. Chen, Han & Huang, Ye & Shen, Huizhong & Chen, Yilin & Ru, Muye & Chen, Yuanchen & Lin, Nan & Su, Shu & Zhuo, Shaojie & Zhong, Qirui & Wang, Xilong & Liu, Junfeng & Li, Bengang & Tao, Shu, 2016. "Modeling temporal variations in global residential energy consumption and pollutant emissions," Applied Energy, Elsevier, vol. 184(C), pages 820-829.
    7. Inglesi-Lotz, Roula, 2017. "Social rate of return to R&D on various energy technologies: Where should we invest more? A study of G7 countries," Energy Policy, Elsevier, vol. 101(C), pages 521-525.
    8. Tom Mikunda & Tom Kober & Heleen de Coninck & Morgan Bazilian & Hilke R�sler & Bob van der Zwaan, 2014. "Designing policy for deployment of CCS in industry," Climate Policy, Taylor & Francis Journals, vol. 14(5), pages 665-676, September.
    9. Li, Yating & Fei, Yinxin & Zhang, Xiao-Bing & Qin, Ping, 2019. "Household appliance ownership and income inequality: Evidence from micro data in China," China Economic Review, Elsevier, vol. 56(C), pages 1-1.
    10. Xiaolun Wang & Xinlin Yao, 2020. "Fueling Pro-Environmental Behaviors with Gamification Design: Identifying Key Elements in Ant Forest with the Kano Model," Sustainability, MDPI, vol. 12(6), pages 1-17, March.
    11. Florian Knobloch & Hector Pollitt & Unnada Chewpreecha & Vassilis Daioglou & Jean-Francois Mercure, 2017. "Simulating the deep decarbonisation of residential heating for limiting global warming to 1.5C," Papers 1710.11019, arXiv.org, revised May 2018.
    12. He, Gang & Victor, David G., 2017. "Experiences and lessons from China’s success in providing electricity for all," Resources, Conservation & Recycling, Elsevier, vol. 122(C), pages 335-338.
    13. Jun Nakatani & Tamon Maruyama & Kosuke Fukuchi & Yuichi Moriguchi, 2015. "A Practical Approach to Screening Potential Environmental Hotspots of Different Impact Categories in Supply Chains," Sustainability, MDPI, vol. 7(9), pages 1-15, August.
    14. van der Zwaan, Bob & Kober, Tom & Calderon, Silvia & Clarke, Leon & Daenzer, Katie & Kitous, Alban & Labriet, Maryse & Lucena, André F.P. & Octaviano, Claudia & Di Sbroiavacca, Nicolas, 2016. "Energy technology roll-out for climate change mitigation: A multi-model study for Latin America," Energy Economics, Elsevier, vol. 56(C), pages 526-542.
    15. Fichter, Tobias & Soria, Rafael & Szklo, Alexandre & Schaeffer, Roberto & Lucena, Andre F.P., 2017. "Assessing the potential role of concentrated solar power (CSP) for the northeast power system of Brazil using a detailed power system model," Energy, Elsevier, vol. 121(C), pages 695-715.
    16. Selosse, Sandrine & Ricci, Olivia & Maïzi, Nadia, 2013. "Fukushima's impact on the European power sector: The key role of CCS technologies," Energy Economics, Elsevier, vol. 39(C), pages 305-312.
    17. Kamjoo, Azadeh & Maheri, Alireza & Putrus, Ghanim A., 2014. "Chance constrained programming using non-Gaussian joint distribution function in design of standalone hybrid renewable energy systems," Energy, Elsevier, vol. 66(C), pages 677-688.
    18. Mokri, Alaeddine & Aal Ali, Mona & Emziane, Mahieddine, 2013. "Solar energy in the United Arab Emirates: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 340-375.
    19. Ondraczek, Janosch, 2014. "Are we there yet? Improving solar PV economics and power planning in developing countries: The case of Kenya," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 604-615.
    20. Clarke, Fiona & Dorneanu, Bogdan & Mechleri, Evgenia & Arellano-Garcia, Harvey, 2021. "Optimal design of heating and cooling pipeline networks for residential distributed energy resource systems," Energy, Elsevier, vol. 235(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tcpoxx:v:13:y:2013:i:4:p:490-513. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/tcpo20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.