IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v11y2020i1d10.1038_s41467-020-19578-z.html
   My bibliography  Save this article

The economic costs of planting, preserving, and managing the world’s forests to mitigate climate change

Author

Listed:
  • K. G. Austin

    (RTI International)

  • J. S. Baker

    (RTI International
    North Carolina State University, 2800 Faucette Dr)

  • B. L. Sohngen

    (The Ohio State University)

  • C. M. Wade

    (RTI International)

  • A. Daigneault

    (University of Maine)

  • S. B. Ohrel

    (US EPA)

  • S. Ragnauth

    (US EPA)

  • A. Bean

    (RTI International)

Abstract

Forests are critical for stabilizing our climate, but costs of mitigation over space, time, and stakeholder group remain uncertain. Using the Global Timber Model, we project mitigation potential and costs for four abatement activities across 16 regions for carbon price scenarios of $5–$100/tCO2. We project 0.6–6.0 GtCO2 yr−1 in global mitigation by 2055 at costs of 2–393 billion USD yr−1, with avoided tropical deforestation comprising 30–54% of total mitigation. Higher prices incentivize larger mitigation proportions via rotation and forest management activities in temperate and boreal biomes. Forest area increases 415–875 Mha relative to the baseline by 2055 at prices $35–$100/tCO2, with intensive plantations comprising

Suggested Citation

  • K. G. Austin & J. S. Baker & B. L. Sohngen & C. M. Wade & A. Daigneault & S. B. Ohrel & S. Ragnauth & A. Bean, 2020. "The economic costs of planting, preserving, and managing the world’s forests to mitigate climate change," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-19578-z
    DOI: 10.1038/s41467-020-19578-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-020-19578-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-020-19578-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Daigneault, Adam & Simons-Legaard, Erin & Weiskittel, Aaron, 2024. "Tradeoffs and synergies of optimized management for maximizing carbon sequestration across complex landscapes and diverse ecosystem services," Forest Policy and Economics, Elsevier, vol. 161(C).
    2. Baker, Justin S. & Rossi, David & Abt, Robert, 2022. "Quantifying Additionality Thresholds for Forest Carbon Offsets," 2022 Annual Meeting, July 31-August 2, Anaheim, California 322510, Agricultural and Applied Economics Association.
    3. Gren, Ing-Marie, 2024. "A trading market for uncertain carbon removal by land use in the EU," Forest Policy and Economics, Elsevier, vol. 159(C).
    4. J. Sartori, Pedro & Schons, Stella Z. & Amacher, Gregory S. & Burkhart, Harold, 2024. "Deferred rotation carbon programs for even-aged forests: Aligning landowner and societal objectives," Forest Policy and Economics, Elsevier, vol. 168(C).
    5. Xin Zhao & Bryan K. Mignone & Marshall A. Wise & Haewon C. McJeon, 2024. "Trade-offs in land-based carbon removal measures under 1.5 °C and 2 °C futures," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    6. Bartels, Lara & Kesternich, Martin & Löschel, Andreas, 2021. "The demand for voluntary carbon sequestration: Experimental evidence from a reforestation project in Germany," ZEW Discussion Papers 21-088, ZEW - Leibniz Centre for European Economic Research.
    7. Juan Von Thaden & Gilberto Binnqüist-Cervantes & Octavio Pérez-Maqueo & Debora Lithgow, 2022. "Half-Century of Forest Change in a Neotropical Peri-Urban Landscape: Drivers and Trends," Land, MDPI, vol. 11(4), pages 1-14, April.
    8. Chu, Long & Grafton, R. Quentin & Nguyen, Hai, 2022. "A global analysis of the break-even prices to reduce atmospheric carbon dioxide via forest plantation and avoided deforestation," Forest Policy and Economics, Elsevier, vol. 135(C).
    9. Jingyan Fu & Artie W. Ng, 2021. "Scaling up Renewable Energy Assets: Issuing Green Bond via Structured Public-Private Collaboration for Managing Risk in an Emerging Economy," Energies, MDPI, vol. 14(11), pages 1-16, May.
    10. Alice Favero & Christopher M. Wade & Yongxia Cai & Sara B. Ohrel & Justin Baker & Jared Creason & Shaun Ragnauth & Gregory Latta & Bruce A. McCarl, 2024. "US land sector mitigation investments and emissions implications," Nature Communications, Nature, vol. 15(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-19578-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.