Credit risk: A new privacy-preserving decentralized credit assessment model
Author
Abstract
Suggested Citation
DOI: 10.1016/j.frl.2024.105937
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Zhao, Chuanjun & Sun, Xuzhuang & Wu, Meiling & Kang, Lu, 2024. "Advancing financial fraud detection: Self-attention generative adversarial networks for precise and effective identification," Finance Research Letters, Elsevier, vol. 60(C).
- Ning Cai & Steven Kou, 2019. "Econometrics with Privacy Preservation," Operations Research, INFORMS, vol. 67(4), pages 905-926, July.
- Wiginton, John C., 1980. "A Note on the Comparison of Logit and Discriminant Models of Consumer Credit Behavior," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 15(3), pages 757-770, September.
- Dumitrescu, Elena & Hué, Sullivan & Hurlin, Christophe & Tokpavi, Sessi, 2022.
"Machine learning for credit scoring: Improving logistic regression with non-linear decision-tree effects,"
European Journal of Operational Research, Elsevier, vol. 297(3), pages 1178-1192.
- Elena Ivona Dumitrescu & Sullivan Hué & Christophe Hurlin & Sessi Tokpavi, 2022. "Machine Learning for Credit Scoring: Improving Logistic Regression with Non Linear Decision Tree Effects," Post-Print hal-03331114, HAL.
- Nwafor, Chioma Ngozi & Nwafor, Obumneme Zimuzor, 2023. "Determinants of non-performing loans: An explainable ensemble and deep neural network approach," Finance Research Letters, Elsevier, vol. 56(C).
- Lei, Yu-Tian & Ma, Chao-Qun & Ren, Yi-Shuai & Chen, Xun-Qi & Narayan, Seema & Huynh, Anh Ngoc Quang, 2023. "A distributed deep neural network model for credit card fraud detection," Finance Research Letters, Elsevier, vol. 58(PC).
- Luo, Jian & Yan, Xin & Tian, Ye, 2020. "Unsupervised quadratic surface support vector machine with application to credit risk assessment," European Journal of Operational Research, Elsevier, vol. 280(3), pages 1008-1017.
- Satyajit Chatterjee & Dean Corbae & Kyle Dempsey & José‐Víctor Ríos‐Rull, 2023.
"A Quantitative Theory of the Credit Score,"
Econometrica, Econometric Society, vol. 91(5), pages 1803-1840, September.
- Satyajit c & Dean Corbae & Kyle Dempsey & Jose-Victor Rios-Rull, 2020. "A Quantitative Theory of the Credit Score," PIER Working Paper Archive 20-030, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
- Satyajit Chatterjee & Dean Corbae & Kyle Dempsey & José-Víctor Ríos-Rull, 2020. "A Quantitative Theory of the Credit Score," Working Papers 770, Federal Reserve Bank of Minneapolis.
- Satyajit Chatterjee & Dean Corbae & Kyle P. Dempsey & José-Víctor Ríos-Rull, 2020. "A Quantitative Theory of the Credit Score," NBER Working Papers 27671, National Bureau of Economic Research, Inc.
- Satyajit Chatterjee & Dean Corbae & Kyle Dempsey & José-Víctor Ríos-Rull, 2020. "A Quantitative Theory of the Credit Score," Working Papers 20-39, Federal Reserve Bank of Philadelphia.
- Ma, Yuanyuan & Zhang, Pingping & Duan, Shaodong & Zhang, Tianjie, 2023. "Credit default prediction of Chinese real estate listed companies based on explainable machine learning," Finance Research Letters, Elsevier, vol. 58(PA).
- Yang, Fan & Abedin, Mohammad Zoynul & Hajek, Petr, 2024. "An explainable federated learning and blockchain-based secure credit modeling method," European Journal of Operational Research, Elsevier, vol. 317(2), pages 449-467.
- Gunnarsson, Björn Rafn & vanden Broucke, Seppe & Baesens, Bart & Óskarsdóttir, María & Lemahieu, Wilfried, 2021. "Deep learning for credit scoring: Do or don’t?," European Journal of Operational Research, Elsevier, vol. 295(1), pages 292-305.
- Shi, Baofeng & Zhao, Xue & Wu, Bi & Dong, Yizhe, 2019. "Credit rating and microfinance lending decisions based on loss given default (LGD)," Finance Research Letters, Elsevier, vol. 30(C), pages 124-129.
- Byun, Junyoung & Ko, Hyungjin & Lee, Jaewook, 2023. "A Privacy-preserving mean–variance optimal portfolio," Finance Research Letters, Elsevier, vol. 54(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Shi, Yong & Qu, Yi & Chen, Zhensong & Mi, Yunlong & Wang, Yunong, 2024. "Improved credit risk prediction based on an integrated graph representation learning approach with graph transformation," European Journal of Operational Research, Elsevier, vol. 315(2), pages 786-801.
- Kriebel, Johannes & Stitz, Lennart, 2022. "Credit default prediction from user-generated text in peer-to-peer lending using deep learning," European Journal of Operational Research, Elsevier, vol. 302(1), pages 309-323.
- Emmanuel Flachaire & Sullivan Hué & Sébastien Laurent & Gilles Hacheme, 2024.
"Interpretable Machine Learning Using Partial Linear Models,"
Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 86(3), pages 519-540, June.
- Emmanuel Flachaire & Sullivan Hué & Sébastien Laurent & Gilles Hacheme, 2023. "Interpretable Machine Learning Using Partial Linear Models," Post-Print hal-04529011, HAL.
- Kellner, Ralf & Nagl, Maximilian & Rösch, Daniel, 2022. "Opening the black box – Quantile neural networks for loss given default prediction," Journal of Banking & Finance, Elsevier, vol. 134(C).
- Chi, Guotai & Dong, Bingjie & Zhou, Ying & Jin, Peng, 2024. "Long-horizon predictions of credit default with inconsistent customers," Technological Forecasting and Social Change, Elsevier, vol. 198(C).
- Liu, Yi & Yang, Menglong & Wang, Yudong & Li, Yongshan & Xiong, Tiancheng & Li, Anzhe, 2022. "Applying machine learning algorithms to predict default probability in the online credit market: Evidence from China," International Review of Financial Analysis, Elsevier, vol. 79(C).
- Sullivan Hué, 2022. "GAM(L)A: An econometric model for interpretable machine learning," French Stata Users' Group Meetings 2022 19, Stata Users Group.
- Li, Huan & Wu, Weixing, 2024. "Loan default predictability with explainable machine learning," Finance Research Letters, Elsevier, vol. 60(C).
- Tatjana Miljkovic & Pei Wang, 2025. "A dimension reduction assisted credit scoring method for big data with categorical features," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 11(1), pages 1-30, December.
- Yang, Fan & Abedin, Mohammad Zoynul & Hajek, Petr, 2024. "An explainable federated learning and blockchain-based secure credit modeling method," European Journal of Operational Research, Elsevier, vol. 317(2), pages 449-467.
- Chen, Yujia & Calabrese, Raffaella & Martin-Barragan, Belen, 2024. "Interpretable machine learning for imbalanced credit scoring datasets," European Journal of Operational Research, Elsevier, vol. 312(1), pages 357-372.
- Emmanuel Flachaire & Gilles Hacheme & Sullivan Hu'e & S'ebastien Laurent, 2022. "GAM(L)A: An econometric model for interpretable Machine Learning," Papers 2203.11691, arXiv.org.
- Tigges, Maximilian & Mestwerdt, Sönke & Tschirner, Sebastian & Mauer, René, 2024. "Who gets the money? A qualitative analysis of fintech lending and credit scoring through the adoption of AI and alternative data," Technological Forecasting and Social Change, Elsevier, vol. 205(C).
- Dangxing Chen & Weicheng Ye & Jiahui Ye, 2022. "Interpretable Selective Learning in Credit Risk," Papers 2209.10127, arXiv.org.
- Sanroman Graciela & Bertoletti Lucía & Borraz Fernando, 2024.
"Consumer Debt and Poverty: the Default Risk Gap,"
Asociación Argentina de Economía Política: Working Papers
4765, Asociación Argentina de Economía Política.
- Bertoletti, Lucía & Borraz, Fernando & Sanroman, Graciela, 2024. "Consumer Debt and Poverty: the Default Risk Gap," GLO Discussion Paper Series 1439, Global Labor Organization (GLO).
- Wang, Yi-Ran & Ma, Chao-Qun & Ren, Yi-Shuai, 2022. "A model for CBDC audits based on blockchain technology: Learning from the DCEP," Research in International Business and Finance, Elsevier, vol. 63(C).
- Al-Amin Abba Dabo & Amin Hosseinian-Far, 2023. "An Integrated Methodology for Enhancing Reverse Logistics Flows and Networks in Industry 5.0," Logistics, MDPI, vol. 7(4), pages 1-26, December.
- Natalia Nehrebecka, 2021. "Internal Credit Risk Models and Digital Transformation: What to Prepare for? An Application to Poland," European Research Studies Journal, European Research Studies Journal, vol. 0(Special 2), pages 719-736.
- Tertilt, Michèle & Exler, Florian & Livshits, Igor & MacGee, Jim, 2020.
"Consumer Credit with Over-Optimistic Borrowers,"
CEPR Discussion Papers
15570, C.E.P.R. Discussion Papers.
- Florian Exler & Igor Livshits & James MacGee & Michele Tertilt, 2021. "Consumer Credit with Over-Optimistic Borrowers," Working Papers 21-42, Federal Reserve Bank of Philadelphia.
- Florian Exler & Igor Livshits & James MacGee & Michèle Tertilt, 2020. "Consumer Credit with Over-optimistic Borrowers," Staff Working Papers 20-57, Bank of Canada.
- Florian Exler & Igor Livshits & James MacGee & Michèle Tertilt, 2020. "Consumer Credit With Over-Optimistic Borrowers," CRC TR 224 Discussion Paper Series crctr224_2020_245, University of Bonn and University of Mannheim, Germany.
- Yu, Lean & Wang, Shouyang & Lai, Kin Keung, 2009. "An intelligent-agent-based fuzzy group decision making model for financial multicriteria decision support: The case of credit scoring," European Journal of Operational Research, Elsevier, vol. 195(3), pages 942-959, June.
More about this item
Keywords
Credit assessment; Privacy protection; Data privacy; Linear regression;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:finlet:v:67:y:2024:i:pb:s154461232400967x. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/frl .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.