IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v280y2020i3p1008-1017.html
   My bibliography  Save this article

Unsupervised quadratic surface support vector machine with application to credit risk assessment

Author

Listed:
  • Luo, Jian
  • Yan, Xin
  • Tian, Ye

Abstract

Unsupervised classification is a highly important task of machine learning methods. Although achieving great success in supervised classification, support vector machine (SVM) is much less utilized to classify unlabeled data points, which also induces many drawbacks including sensitive to nonlinear kernels and random initializations, high computational cost, unsuitable for imbalanced datasets. In this paper, to utilize the advantages of SVM and overcome the drawbacks of SVM-based clustering methods, we propose a completely new two-stage unsupervised classification method with no initialization: a new unsupervised kernel-free quadratic surface SVM (QSSVM) model is proposed to avoid selecting kernels and related kernel parameters, then a golden-section algorithm is designed to generate the appropriate classifier for balanced and imbalanced data. By studying certain properties of proposed model, a convergent decomposition algorithm is developed to implement this non-covex QSSVM model effectively and efficiently (in terms of computational cost). Numerical tests on artificial and public benchmark data indicate that the proposed unsupervised QSSVM method outperforms well-known clustering methods (including SVM-based and other state-of-the-art methods), particularly in terms of classification accuracy. Moreover, we extend and apply the proposed method to credit risk assessment by incorporating the T-test based feature weights. The promising numerical results on benchmark personal credit data and real-world corporate credit data strongly demonstrate the effectiveness, efficiency and interpretability of proposed method, as well as indicate its significant potential in certain real-world applications.

Suggested Citation

  • Luo, Jian & Yan, Xin & Tian, Ye, 2020. "Unsupervised quadratic surface support vector machine with application to credit risk assessment," European Journal of Operational Research, Elsevier, vol. 280(3), pages 1008-1017.
  • Handle: RePEc:eee:ejores:v:280:y:2020:i:3:p:1008-1017
    DOI: 10.1016/j.ejor.2019.08.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221719306630
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2019.08.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kim, A. & Yang, Y. & Lessmann, S. & Ma, T. & Sung, M.-C. & Johnson, J.E.V., 2020. "Can deep learning predict risky retail investors? A case study in financial risk behavior forecasting," European Journal of Operational Research, Elsevier, vol. 283(1), pages 217-234.
    2. Astorino, Annabella & Avolio, Matteo & Fuduli, Antonio, 2022. "A maximum-margin multisphere approach for binary Multiple Instance Learning," European Journal of Operational Research, Elsevier, vol. 299(2), pages 642-652.
    3. Shi, Yong & Qu, Yi & Chen, Zhensong & Mi, Yunlong & Wang, Yunong, 2024. "Improved credit risk prediction based on an integrated graph representation learning approach with graph transformation," European Journal of Operational Research, Elsevier, vol. 315(2), pages 786-801.
    4. Luo, Jian & Hong, Tao & Gao, Zheming & Fang, Shu-Cherng, 2023. "A robust support vector regression model for electric load forecasting," International Journal of Forecasting, Elsevier, vol. 39(2), pages 1005-1020.
    5. Gao, Zheming & Fang, Shu-Cherng & Luo, Jian & Medhin, Negash, 2021. "A kernel-free double well potential support vector machine with applications," European Journal of Operational Research, Elsevier, vol. 290(1), pages 248-262.
    6. Tao Yu & Wei Huang & Xin Tang, 2023. "A Novel Fuzzy Unsupervised Quadratic Surface Support Vector Machine Based on DC Programming: An Application to Credit Risk Management," Mathematics, MDPI, vol. 11(22), pages 1-14, November.
    7. Chen, Claire Y.T. & Sun, Edward W. & Miao, Wanyu & Lin, Yi-Bing, 2024. "Reconciling business analytics with graphically initialized subspace clustering for optimal nonlinear pricing," European Journal of Operational Research, Elsevier, vol. 312(3), pages 1086-1107.
    8. Kellner, Ralf & Nagl, Maximilian & Rösch, Daniel, 2022. "Opening the black box – Quantile neural networks for loss given default prediction," Journal of Banking & Finance, Elsevier, vol. 134(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:280:y:2020:i:3:p:1008-1017. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.