Forecasting the price of Bitcoin using deep learning
Author
Abstract
Suggested Citation
DOI: 10.1016/j.frl.2020.101755
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Wang, Jue & Zhou, Hao & Hong, Tao & Li, Xiang & Wang, Shouyang, 2020. "A multi-granularity heterogeneous combination approach to crude oil price forecasting," Energy Economics, Elsevier, vol. 91(C).
- Pavel Ciaian & Miroslava Rajcaniova & d’Artis Kancs, 2016.
"The economics of BitCoin price formation,"
Applied Economics, Taylor & Francis Journals, vol. 48(19), pages 1799-1815, April.
- Pavel Ciaian & Miroslava Rajcaniova & d'Artis Kancs, 2014. "The Economics of BitCoin Price Formation," EERI Research Paper Series EERI RP 2014/08, Economics and Econometrics Research Institute (EERI), Brussels.
- Pavel Ciaian & Miroslava Rajcaniova & d'Artis Kancs, 2014. "The Economics of BitCoin Price Formation," Papers 1405.4498, arXiv.org.
- Jamal Bouoiyour & Refk Selmi & Aviral Kumar Tiwari & Olaolu Richard Olayeni, 2016.
"What drives Bitcoin price?,"
Economics Bulletin, AccessEcon, vol. 36(2), pages 843-850.
- Jamal Bouoiyour & Refk Selmi & Aviral Kumar Tiwari, 2016. "What drives Bitcoin price?," Post-Print hal-01879673, HAL.
- Godarzi, Ali Abbasi & Amiri, Rohollah Madadi & Talaei, Alireza & Jamasb, Tooraj, 2014. "Predicting oil price movements: A dynamic Artificial Neural Network approach," Energy Policy, Elsevier, vol. 68(C), pages 371-382.
- Urquhart, Andrew, 2016. "The inefficiency of Bitcoin," Economics Letters, Elsevier, vol. 148(C), pages 80-82.
- Wei, Lu & Li, Guowen & Zhu, Xiaoqian & Sun, Xiaolei & Li, Jianping, 2019. "Developing a hierarchical system for energy corporate risk factors based on textual risk disclosures," Energy Economics, Elsevier, vol. 80(C), pages 452-460.
- Zhao, Yang & Li, Jianping & Yu, Lean, 2017. "A deep learning ensemble approach for crude oil price forecasting," Energy Economics, Elsevier, vol. 66(C), pages 9-16.
- Demir, Ender & Gozgor, Giray & Lau, Chi Keung Marco & Vigne, Samuel A., 2018. "Does economic policy uncertainty predict the Bitcoin returns? An empirical investigation," Finance Research Letters, Elsevier, vol. 26(C), pages 145-149.
- Sun, Xiaolei & Liu, Mingxi & Sima, Zeqian, 2020. "A novel cryptocurrency price trend forecasting model based on LightGBM," Finance Research Letters, Elsevier, vol. 32(C).
- Matkovskyy, Roman & Jalan, Akanksha, 2019.
"From financial markets to Bitcoin markets: A fresh look at the contagion effect,"
Finance Research Letters, Elsevier, vol. 31(C), pages 93-97.
- Roman Matkovskyy & Akanksha Jalan, 2019. "From financial markets to Bitcoin markets: A fresh look at the contagion effect," Post-Print hal-02131637, HAL.
- Liu, Zhenkun & Jiang, Ping & Zhang, Lifang & Niu, Xinsong, 2020. "A combined forecasting model for time series: Application to short-term wind speed forecasting," Applied Energy, Elsevier, vol. 259(C).
- Li, Jianping & Li, Jingyu & Zhu, Xiaoqian & Yao, Yinhong & Casu, Barbara, 2020. "Risk spillovers between FinTech and traditional financial institutions: Evidence from the U.S," International Review of Financial Analysis, Elsevier, vol. 71(C).
- Omer Berat Sezer & Mehmet Ugur Gudelek & Ahmet Murat Ozbayoglu, 2019. "Financial Time Series Forecasting with Deep Learning : A Systematic Literature Review: 2005-2019," Papers 1911.13288, arXiv.org.
- Yu, Feng & Xu, Xiaozhong, 2014. "A short-term load forecasting model of natural gas based on optimized genetic algorithm and improved BP neural network," Applied Energy, Elsevier, vol. 134(C), pages 102-113.
- Marianna Succurro & Giuseppe Arcuri & Giuseppina Damiana Costanzo, 2019.
"A combined approach based on robust PCA to improve bankruptcy forecasting,"
Review of Accounting and Finance, Emerald Group Publishing Limited, vol. 18(2), pages 296-320, May.
- Giuseppe Arcuri & Marianna Succurro & Giuseppina Damiana Costanzo, 2019. "A combined approach based on Robust PCA to improve bankruptcy forecasting," Post-Print hal-01975082, HAL.
- Fry, John & Cheah, Eng-Tuck, 2016. "Negative bubbles and shocks in cryptocurrency markets," International Review of Financial Analysis, Elsevier, vol. 47(C), pages 343-352.
- Lu Wei & Guowen Li & Xiaoqian Zhu & Jianping Li, 2019. "Discovering bank risk factors from financial statements based on a new semi‐supervised text mining algorithm," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 59(3), pages 1519-1552, September.
- Li, Jingyu & Li, Jianping & Zhu, Xiaoqian, 2020. "Risk dependence between energy corporations: A text-based measurement approach," International Review of Economics & Finance, Elsevier, vol. 68(C), pages 33-46.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Goodell, John W. & Ben Jabeur, Sami & Saâdaoui, Foued & Nasir, Muhammad Ali, 2023. "Explainable artificial intelligence modeling to forecast bitcoin prices," International Review of Financial Analysis, Elsevier, vol. 88(C).
- Liu, Qingfu & Tao, Zhenyi & Tse, Yiuman & Wang, Chuanjie, 2022. "Stock market prediction with deep learning: The case of China," Finance Research Letters, Elsevier, vol. 46(PA).
- Bouteska, Ahmed & Abedin, Mohammad Zoynul & Hajek, Petr & Yuan, Kunpeng, 2024. "Cryptocurrency price forecasting – A comparative analysis of ensemble learning and deep learning methods," International Review of Financial Analysis, Elsevier, vol. 92(C).
- Jinghua Wang & Geoffrey M. Ngene & Yan Shi & Ann Nduati Mungai, 2023. "An Investigation of the Predictability of Uncertainty Indices on Bitcoin Returns," JRFM, MDPI, vol. 16(10), pages 1-12, October.
- Lili Pan & Lin Wang & Qianqian Feng, 2022. "A Bibliometric Analysis of Risk Management in Foreign Direct Investment: Insights and Implications," Sustainability, MDPI, vol. 14(12), pages 1-18, June.
- Chenlu Dang & Fan Wang & Zimo Yang & Hongxia Zhang & Yufeng Qian, 2022. "RETRACTED ARTICLE: Evaluating and forecasting the risks of small to medium-sized enterprises in the supply chain finance market using blockchain technology and deep learning model," Operations Management Research, Springer, vol. 15(3), pages 662-675, December.
- Hajek, Petr & Hikkerova, Lubica & Sahut, Jean-Michel, 2023. "How well do investor sentiment and ensemble learning predict Bitcoin prices?," Research in International Business and Finance, Elsevier, vol. 64(C).
- Wei Liu & Yoshihisa Suzuki & Shuyi Du, 2024. "Forecasting the Stock Price of Listed Innovative SMEs Using Machine Learning Methods Based on Bayesian optimization: Evidence from China," Computational Economics, Springer;Society for Computational Economics, vol. 63(5), pages 2035-2068, May.
- Samuka Mohanty & Rajashree Dash, 2022. "Neural Network-Based Bitcoin Pricing Using a New Mutated Climb Monkey Algorithm with TOPSIS Analysis for Sustainable Development," Mathematics, MDPI, vol. 10(22), pages 1-23, November.
- Cynthia Weiyi Cai & Rui Xue & Bi Zhou, 2023. "Cryptocurrency puzzles: a comprehensive review and re-introduction," Journal of Accounting Literature, Emerald Group Publishing Limited, vol. 46(1), pages 26-50, June.
- Naseh Majidi & Mahdi Shamsi & Farokh Marvasti, 2022. "Algorithmic Trading Using Continuous Action Space Deep Reinforcement Learning," Papers 2210.03469, arXiv.org.
- Ahmed, Walid M.A., 2022. "Robust drivers of Bitcoin price movements: An extreme bounds analysis," The North American Journal of Economics and Finance, Elsevier, vol. 62(C).
- Liu, Yujun & Li, Zhongfei & Nekhili, Ramzi & Sultan, Jahangir, 2023. "Forecasting cryptocurrency returns with machine learning," Research in International Business and Finance, Elsevier, vol. 64(C).
- Hao, Jun & Feng, Qianqian & Yuan, Jiaxin & Sun, Xiaolei & Li, Jianping, 2022. "A dynamic ensemble learning with multi-objective optimization for oil prices prediction," Resources Policy, Elsevier, vol. 79(C).
- Samuka Mohanty & Rajashree Dash, 2023. "A New Dual Normalization for Enhancing the Bitcoin Pricing Capability of an Optimized Low Complexity Neural Net with TOPSIS Evaluation," Mathematics, MDPI, vol. 11(5), pages 1-28, February.
- Kui Wang & Jie Wan & Gang Li & Hao Sun, 2022. "A Hybrid Algorithm-Level Ensemble Model for Imbalanced Credit Default Prediction in the Energy Industry," Energies, MDPI, vol. 15(14), pages 1-18, July.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Haffar, Adlane & Le Fur, Eric, 2021. "Structural vector error correction modelling of Bitcoin price," The Quarterly Review of Economics and Finance, Elsevier, vol. 80(C), pages 170-178.
- Parthajit Kayal & Purnima Rohilla, 2021. "Bitcoin in the economics and finance literature: a survey," SN Business & Economics, Springer, vol. 1(7), pages 1-21, July.
- Aurelio F. Bariviera & Ignasi Merediz‐Solà, 2021.
"Where Do We Stand In Cryptocurrencies Economic Research? A Survey Based On Hybrid Analysis,"
Journal of Economic Surveys, Wiley Blackwell, vol. 35(2), pages 377-407, April.
- Aurelio F. Bariviera & Ignasi Merediz-Sol`a, 2020. "Where do we stand in cryptocurrencies economic research? A survey based on hybrid analysis," Papers 2003.09723, arXiv.org.
- Andrea Flori, 2019. "Cryptocurrencies In Finance: Review And Applications," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(05), pages 1-22, August.
- Cynthia Weiyi Cai & Rui Xue & Bi Zhou, 2023. "Cryptocurrency puzzles: a comprehensive review and re-introduction," Journal of Accounting Literature, Emerald Group Publishing Limited, vol. 46(1), pages 26-50, June.
- Flori, Andrea, 2019. "News and subjective beliefs: A Bayesian approach to Bitcoin investments," Research in International Business and Finance, Elsevier, vol. 50(C), pages 336-356.
- Yin, Libo & Nie, Jing & Han, Liyan, 2021. "Understanding cryptocurrency volatility: The role of oil market shocks," International Review of Economics & Finance, Elsevier, vol. 72(C), pages 233-253.
- Tiwari, Aviral Kumar & Adewuyi, Adeolu O. & Albulescu, Claudiu T. & Wohar, Mark E., 2020. "Empirical evidence of extreme dependence and contagion risk between main cryptocurrencies," The North American Journal of Economics and Finance, Elsevier, vol. 51(C).
- Achraf Ghorbel & Wajdi Frikha & Yasmine Snene Manzli, 2022. "Testing for asymmetric non-linear short- and long-run relationships between crypto-currencies and stock markets," Eurasian Economic Review, Springer;Eurasia Business and Economics Society, vol. 12(3), pages 387-425, September.
- Zhu, Xiaoqian & Wei, Lu & Li, Jianping, 2021. "A two-stage general approach to aggregate multiple bank risks," Finance Research Letters, Elsevier, vol. 40(C).
- Gill-de-Albornoz, Belén & Lafuente, Juan A. & Monfort, Mercedes & Ordoñez, Javier, 2024. "Bitcoin attention and economic policy uncertainty," Finance Research Letters, Elsevier, vol. 60(C).
- Khanh Hoang & Cuong C. Nguyen & Kongchheng Poch & Thang X. Nguyen, 2020. "Does Bitcoin Hedge Commodity Uncertainty?," JRFM, MDPI, vol. 13(6), pages 1-14, June.
- Lennart Ante, 2020. "A place next to Satoshi: foundations of blockchain and cryptocurrency research in business and economics," Scientometrics, Springer;Akadémiai Kiadó, vol. 124(2), pages 1305-1333, August.
- Li, Jianping & Li, Guowen & Liu, Mingxi & Zhu, Xiaoqian & Wei, Lu, 2022. "A novel text-based framework for forecasting agricultural futures using massive online news headlines," International Journal of Forecasting, Elsevier, vol. 38(1), pages 35-50.
- Anoop S Kumar & Taufeeq Ajaz, 2019. "Co-movement in crypto-currency markets: evidences from wavelet analysis," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 5(1), pages 1-17, December.
- Zargar, Faisal Nazir & Kumar, Dilip, 2019. "Long range dependence in the Bitcoin market: A study based on high-frequency data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 515(C), pages 625-640.
- Cagli, Efe Caglar, 2019. "Explosive behavior in the prices of Bitcoin and altcoins," Finance Research Letters, Elsevier, vol. 29(C), pages 398-403.
- Zura Kakushadze & Jim Kyung-Soo Liew, 2018. "CryptoRuble: From Russia with Love," Papers 1801.05760, arXiv.org.
- Zargar, Faisal Nazir & Kumar, Dilip, 2019. "Informational inefficiency of Bitcoin: A study based on high-frequency data," Research in International Business and Finance, Elsevier, vol. 47(C), pages 344-353.
- Bedi, Prateek & Nashier, Tripti, 2020. "On the investment credentials of Bitcoin: A cross-currency perspective," Research in International Business and Finance, Elsevier, vol. 51(C).
More about this item
Keywords
Bitcoin price prediction; Stacked denoising autoencoders; Feature learning; Deep extraction;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:finlet:v:40:y:2021:i:c:s1544612320304864. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/frl .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.