IDEAS home Printed from https://ideas.repec.org/a/gam/jjrfmx/v16y2023i10p461-d1265145.html
   My bibliography  Save this article

An Investigation of the Predictability of Uncertainty Indices on Bitcoin Returns

Author

Listed:
  • Jinghua Wang

    (Martin Tuchman School of Management, New Jersey Institute of Technology, 184-198 Central Ave, Newark, NJ 07103, USA)

  • Geoffrey M. Ngene

    (Stetson School of Business and Economics, Mercer University, Macon, GA 31201, USA)

  • Yan Shi

    (Computer Science and Software Engineering Department, College of Engineering, Mathematics and Science, University of Wisconsin-Platteville, Platteville, WI 53181, USA)

  • Ann Nduati Mungai

    (Cameron School of Business, University of North Carolina Wilmington, 601 South College Street, Wilmington, NC 28403, USA)

Abstract

Policymakers and portfolio managers pay keen attention to sources of uncertainties that drive asset returns and volatility. The influence of uncertainty on Bitcoin has the potential to drive fluctuations in the entire cryptocurrency market. We investigate the predictability of thirteen economic policy uncertainty indices on Bitcoin returns. Using the Random Forest machine learning algorithm, we find that Singapore’s economic policy uncertainty (EPU) has the strongest predictive power on Bitcoin returns, followed by financial crisis (FC) uncertainty and world trade uncertainty (WTU). We further categorize these uncertainties into different groups. Interestingly, the predictability of uncertainty indices on Bitcoin returns within the international trade group is stronger compared to other uncertainty categories. Additionally, we observed that internet-based uncertainty measures have more predictive power of Bitcoin returns than newspaper- and report-based measures. These results are robust using various additional machine learning methods. We believe that these findings could be valuable for policymakers and portfolio managers when making decisions related to uncertainty drivers of cryptocurrency prices and returns.

Suggested Citation

  • Jinghua Wang & Geoffrey M. Ngene & Yan Shi & Ann Nduati Mungai, 2023. "An Investigation of the Predictability of Uncertainty Indices on Bitcoin Returns," JRFM, MDPI, vol. 16(10), pages 1-12, October.
  • Handle: RePEc:gam:jjrfmx:v:16:y:2023:i:10:p:461-:d:1265145
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1911-8074/16/10/461/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1911-8074/16/10/461/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Smith, Simon C., 2022. "Time-variation, multiple testing, and the factor zoo," International Review of Financial Analysis, Elsevier, vol. 84(C).
    2. Liu, Mingxi & Li, Guowen & Li, Jianping & Zhu, Xiaoqian & Yao, Yinhong, 2021. "Forecasting the price of Bitcoin using deep learning," Finance Research Letters, Elsevier, vol. 40(C).
    3. Campbell R. Harvey, 2017. "Presidential Address: The Scientific Outlook in Financial Economics," Journal of Finance, American Finance Association, vol. 72(4), pages 1399-1440, August.
    4. Zheng-Zheng Li & Chi-Wei Su & Meng Nan Zhu, 2022. "How Does Uncertainty Affect Volatility Correlation between Financial Assets? Evidence from Bitcoin, Stock and Gold," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 58(9), pages 2682-2694, July.
    5. Li, Zhiyong & Wan, Yifan & Wang, Tianyi & Yu, Mei, 2023. "Factor-timing in the Chinese factor zoo: The role of economic policy uncertainty," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 85(C).
    6. Gozgor, Giray & Tiwari, Aviral Kumar & Demir, Ender & Akron, Sagi, 2019. "The relationship between Bitcoin returns and trade policy uncertainty," Finance Research Letters, Elsevier, vol. 29(C), pages 75-82.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ahmed, Walid M.A., 2022. "Robust drivers of Bitcoin price movements: An extreme bounds analysis," The North American Journal of Economics and Finance, Elsevier, vol. 62(C).
    2. Shi, Huai-Long & Zhou, Wei-Xing, 2022. "Factor volatility spillover and its implications on factor premia," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 80(C).
    3. Hau, Liya & Zhu, Huiming & Shahbaz, Muhammad & Sun, Wuqin, 2021. "Does transaction activity predict Bitcoin returns? Evidence from quantile-on-quantile analysis," The North American Journal of Economics and Finance, Elsevier, vol. 55(C).
    4. Jiang, Yonghong & Wu, Lanxin & Tian, Gengyu & Nie, He, 2021. "Do cryptocurrencies hedge against EPU and the equity market volatility during COVID-19? – New evidence from quantile coherency analysis," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 72(C).
    5. Wang, Kai-Hua & Zhao, Yan-Xin & Jiang, Cui-Feng & Li, Zheng-Zheng, 2022. "Does green finance inspire sustainable development? Evidence from a global perspective," Economic Analysis and Policy, Elsevier, vol. 75(C), pages 412-426.
    6. Filatotchev, Igor & Poulsen, Annette & Bell, R. Greg, 2019. "Corporate governance of a multinational enterprise: Firm, industry and institutional perspectives," Journal of Corporate Finance, Elsevier, vol. 57(C), pages 1-8.
    7. H. Latan & C.J. Chiappetta Jabbour & Ana Beatriz Lopes de Sousa Jabbour & M. Ali, 2023. "Crossing the Red Line? Empirical Evidence and Useful Recommendations on Questionable Research Practices among Business Scholars," Post-Print hal-04276024, HAL.
    8. Guo, Li & Sang, Bo & Tu, Jun & Wang, Yu, 2024. "Cross-cryptocurrency return predictability," Journal of Economic Dynamics and Control, Elsevier, vol. 163(C).
    9. Li, Zheng-Zheng & Meng, Qin & Zhang, Linling & Lobont, Oana-Ramona & Shen, Yijuan, 2023. "How do rare earth prices respond to economic and geopolitical factors?," Resources Policy, Elsevier, vol. 85(PA).
    10. William Forbes & Egor Kiselev & Len Skerratt, 2023. "The stability and downside risk to contrarian profits: Evidence from the S&P 500," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 28(1), pages 733-750, January.
    11. Christian Fieberg & Daniel Metko & Thorsten Poddig & Thomas Loy, 2023. "Machine learning techniques for cross-sectional equity returns’ prediction," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 45(1), pages 289-323, March.
    12. Hubert Dichtl, 2020. "Investing in the S&P 500 index: Can anything beat the buy‐and‐hold strategy?," Review of Financial Economics, John Wiley & Sons, vol. 38(2), pages 352-378, April.
    13. Albert J. Menkveld & Anna Dreber & Felix Holzmeister & Juergen Huber & Magnus Johannesson & Michael Kirchler & Sebastian Neusüß & Michael Razen & Utz Weitzel & David Abad‐Díaz & Menachem (Meni) Abudy , 2024. "Nonstandard Errors," Journal of Finance, American Finance Association, vol. 79(3), pages 2339-2390, June.
      • Albert J. Menkveld & Anna Dreber & Félix Holzmeister & Juergen Huber & Magnus Johannesson & Michael Kirchler & Sebastian Neusüss & Michael Razen & Utz Weitzel & Gunther Capelle-Blancard, 2021. "Non-Standard Errors," Documents de travail du Centre d'Economie de la Sorbonne 21033, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
      • Menkveld, Albert J. & Dreber, Anna & Holzmeister, Felix & Huber, Juergen & Johannesson, Magnus & Kirchler, Michael & Neusüss, Sebastian & Razen, Michael & Weitzel, Utz & Abad-Díaz, David & Abudy, Mena, 2021. "Non-Standard Errors," Working Papers 2021:17, Lund University, Department of Economics.
      • Albert J. Menkveld & Anna Dreber & Felix Holzmeister & Juergen Huber & Magnus Johannesson & Michael Kirchler & Sebastian Neussüs & Michael Razen & Utz Weitzel & Christian Brownlees & Javier Gil-Bazo, 2021. "Non-Standard Errors," Working Papers 1303, Barcelona School of Economics.
      • Menkveld, Albert J. & Dreber, Anna & Holzmeister, Felix & Huber, Jürgen & Johannesson, Magnus & Kirchler, Michael & Neusüss, Sebastian & Razen, Michael & Weitzel, Utz, 2021. "Non-standard errors," IWH Discussion Papers 11/2021, Halle Institute for Economic Research (IWH).
      • Albert J. Menkveld & Anna Dreber & Felix Holzmeister & Juergen Huber & Magnus Johannesson & Michael Kirchler & Sebastian Neussüs & Michael Razen & Utz Weitzel & Christian T. Brownlees & Javier Gil-Baz, 2021. "Non-standard errors," Economics Working Papers 1807, Department of Economics and Business, Universitat Pompeu Fabra.
      • Albert J. et al. Menkveld, 2021. "Non-Standard Errors," CESifo Working Paper Series 9453, CESifo.
      • Albert J Menkveld & Anna Dreber & Felix Holzmeister & Juergen Huber & Magnus Johannesson & Michael Kirchler & Sebastian Neusüss & Michael Razen & Utz Weitzel & Gunther Capelle-Blancard & David Abad-Dí, 2021. "Non-Standard Errors," Post-Print halshs-03500882, HAL.
      • Francesco Franzoni & Roxana Mihet & Markus Leippold & Per Ostberg & Olivier Scaillet & Norman Schürhoff & Oksana Bashchenko & Nicola Mano & Michele Pelli, 2022. "Non-Standard Errors," Swiss Finance Institute Research Paper Series 22-09, Swiss Finance Institute.
      • Albert J. Menkveld & Anna Dreber & Felix Holzmeister & Juergen Huber & Magnus Johannesson & Michael Kirchler & Sebastian Neusüss & Michael Razen & Utz Weitzel & Edwin Baidoo & Michael Frömmel & et al, 2021. "Non-Standard Errors," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 21/1032, Ghent University, Faculty of Economics and Business Administration.
      • Menkveld, Albert J. & Dreber, Anna & Holzmeister, Felix & Huber, Juergen & Johannesson, Magnus & Hasse, Jean-Baptiste & e.a.,, 2023. "Non-Standard Errors," LIDAM Reprints LFIN 2023002, Université catholique de Louvain, Louvain Finance (LFIN).
      • Moinas, Sophie & Declerck, Fany & Menkveld, Albert J. & Dreber, Anna, 2023. "Non-Standard Errors," TSE Working Papers 23-1451, Toulouse School of Economics (TSE).
      • Menkveld, Albert J. & Dreber, Anna & Holzmeister, Felix & Huber, Juergen & Johannesson, Magnus & Kirchler, Michael & Neusüß, Sebastian & Razen, Michael & Weitzel, Utz & Abad-Díaz, David & Abudy, Menac, 2024. "Nonstandard errors," LSE Research Online Documents on Economics 123002, London School of Economics and Political Science, LSE Library.
      • Menkveld, A. & Dreber, A. & Holzmeister, F. & Huber, J. & Johannesson, M. & Kirchler, M. & Neusüss, S. & Razen, M. & Neusüss, S. & Neusüss, S., 2021. "Non-Standard Errors," Cambridge Working Papers in Economics 2182, Faculty of Economics, University of Cambridge.
      • Menkveld, Albert J. & Dreber, Anna & Holzmeister, Felix & Huber, Jürgen & Johannesson, Magnus & Kirchler, Michael & Neusüss, Sebastian & Razen, Michael & Weitzel, Utz, 2021. "Non-standard errors," SAFE Working Paper Series 327, Leibniz Institute for Financial Research SAFE.
      • Albert J. Menkveld & Anna Dreber & Felix Holzmeister & Jürgen Huber & Magnus Johannesson & Michael Kirchler & Sebastian Neusüss & Michael Razen & Utz Weitzel & David Abad-Dí­az & Menachem Abudy & Tobi, 2021. "Non-Standard Errors," Working Papers 2021-31, Faculty of Economics and Statistics, Universität Innsbruck.
      • Ferrara, Gerardo & Jurkatis, Simon, 2021. "Non-standard errors," Bank of England working papers 955, Bank of England.
      • Ciril Bosch-Rosa & Bernhard Kassner, 2023. "Non-Standard Errors," Rationality and Competition Discussion Paper Series 385, CRC TRR 190 Rationality and Competition.
      • Albert J Menkveld & Anna Dreber & Felix Holzmeister & Juergen Huber & Magnus Johannesson & Michael Kirchler & Sebastian Neusüss & Michael Razen & Utz Weitzel & Gunther Capelle-Blancard & David Abad-Dí, 2021. "Non-Standard Errors," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-03500882, HAL.
      • Menkveld, A. & Dreber, A. & Holzmeister, F. & Huber, J. & Johannesson, M. & Kirchler, M. & Neusüss, S. & Razen, M. & Neusüss, S. & Neusüss, S., 2021. "Non-Standard Errors," Janeway Institute Working Papers 2112, Faculty of Economics, University of Cambridge.
      • Wolff, Christian & Menkveld, Albert J. & Dreber, Anna & Holzmeister, Felix & Huber, Juergen & Johannesson, Magnus & Kirchler, Michael & Neusüess, Sebastian & Razen, Michael & Weitzel, Utz, 2021. "Non-Standard Errors," CEPR Discussion Papers 16751, C.E.P.R. Discussion Papers.
    14. Vasilios Plakandaras & Elie Bouri & Rangan Gupta, 2019. "Forecasting Bitcoin Returns: Is there a Role for the U.S. – China Trade War?," Working Papers 201980, University of Pretoria, Department of Economics.
    15. John H. Cochrane, 2017. "Macro-Finance," Review of Finance, European Finance Association, vol. 21(3), pages 945-985.
    16. Stewart Jones & Nurul Alam, 2019. "A machine learning analysis of citation impact among selected Pacific Basin journals," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 59(4), pages 2509-2552, December.
    17. Aloui, Chaker & Hamida, Hela ben & Yarovaya, Larisa, 2021. "Are Islamic gold-backed cryptocurrencies different?," Finance Research Letters, Elsevier, vol. 39(C).
    18. Goodell, John W. & Ben Jabeur, Sami & Saâdaoui, Foued & Nasir, Muhammad Ali, 2023. "Explainable artificial intelligence modeling to forecast bitcoin prices," International Review of Financial Analysis, Elsevier, vol. 88(C).
    19. Vitor Azevedo & Christopher Hoegner, 2023. "Enhancing stock market anomalies with machine learning," Review of Quantitative Finance and Accounting, Springer, vol. 60(1), pages 195-230, January.
    20. Psaradellis, Ioannis & Laws, Jason & Pantelous, Athanasios A. & Sermpinis, Georgios, 2023. "Technical analysis, spread trading, and data snooping control," International Journal of Forecasting, Elsevier, vol. 39(1), pages 178-191.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jjrfmx:v:16:y:2023:i:10:p:461-:d:1265145. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.