IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2210.03469.html
   My bibliography  Save this paper

Algorithmic Trading Using Continuous Action Space Deep Reinforcement Learning

Author

Listed:
  • Naseh Majidi
  • Mahdi Shamsi
  • Farokh Marvasti

Abstract

Price movement prediction has always been one of the traders' concerns in financial market trading. In order to increase their profit, they can analyze the historical data and predict the price movement. The large size of the data and complex relations between them lead us to use algorithmic trading and artificial intelligence. This paper aims to offer an approach using Twin-Delayed DDPG (TD3) and the daily close price in order to achieve a trading strategy in the stock and cryptocurrency markets. Unlike previous studies using a discrete action space reinforcement learning algorithm, the TD3 is continuous, offering both position and the number of trading shares. Both the stock (Amazon) and cryptocurrency (Bitcoin) markets are addressed in this research to evaluate the performance of the proposed algorithm. The achieved strategy using the TD3 is compared with some algorithms using technical analysis, reinforcement learning, stochastic, and deterministic strategies through two standard metrics, Return and Sharpe ratio. The results indicate that employing both position and the number of trading shares can improve the performance of a trading system based on the mentioned metrics.

Suggested Citation

  • Naseh Majidi & Mahdi Shamsi & Farokh Marvasti, 2022. "Algorithmic Trading Using Continuous Action Space Deep Reinforcement Learning," Papers 2210.03469, arXiv.org.
  • Handle: RePEc:arx:papers:2210.03469
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2210.03469
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Liu, Qingfu & Tao, Zhenyi & Tse, Yiuman & Wang, Chuanjie, 2022. "Stock market prediction with deep learning: The case of China," Finance Research Letters, Elsevier, vol. 46(PA).
    2. Aniruddha Dutta & Saket Kumar & Meheli Basu, 2020. "A Gated Recurrent Unit Approach to Bitcoin Price Prediction," JRFM, MDPI, vol. 13(2), pages 1-16, February.
    3. Liu, Mingxi & Li, Guowen & Li, Jianping & Zhu, Xiaoqian & Yao, Yinhong, 2021. "Forecasting the price of Bitcoin using deep learning," Finance Research Letters, Elsevier, vol. 40(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christian Fieberg & Daniel Metko & Thorsten Poddig & Thomas Loy, 2023. "Machine learning techniques for cross-sectional equity returns’ prediction," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 45(1), pages 289-323, March.
    2. Tej Bahadur Shahi & Ashish Shrestha & Arjun Neupane & William Guo, 2020. "Stock Price Forecasting with Deep Learning: A Comparative Study," Mathematics, MDPI, vol. 8(9), pages 1-15, August.
    3. Pawan Kumar Singh & Alok Kumar Pandey & S. C. Bose, 2023. "A new grey system approach to forecast closing price of Bitcoin, Bionic, Cardano, Dogecoin, Ethereum, XRP Cryptocurrencies," Quality & Quantity: International Journal of Methodology, Springer, vol. 57(3), pages 2429-2446, June.
    4. Goodell, John W. & Ben Jabeur, Sami & Saâdaoui, Foued & Nasir, Muhammad Ali, 2023. "Explainable artificial intelligence modeling to forecast bitcoin prices," International Review of Financial Analysis, Elsevier, vol. 88(C).
    5. Sudersan Behera & Sarat Chandra Nayak & A. V. S. Pavan Kumar, 2024. "Evaluating the Performance of Metaheuristic Based Artificial Neural Networks for Cryptocurrency Forecasting," Computational Economics, Springer;Society for Computational Economics, vol. 64(2), pages 1219-1258, August.
    6. Samuka Mohanty & Rajashree Dash, 2023. "A New Dual Normalization for Enhancing the Bitcoin Pricing Capability of an Optimized Low Complexity Neural Net with TOPSIS Evaluation," Mathematics, MDPI, vol. 11(5), pages 1-28, February.
    7. Lili Pan & Lin Wang & Qianqian Feng, 2022. "A Bibliometric Analysis of Risk Management in Foreign Direct Investment: Insights and Implications," Sustainability, MDPI, vol. 14(12), pages 1-18, June.
    8. Huang, Chiou-Jye & Shen, Yamin & Kuo, Ping-Huan & Chen, Yung-Hsiang, 2022. "Novel spatiotemporal feature extraction parallel deep neural network for forecasting confirmed cases of coronavirus disease 2019," Socio-Economic Planning Sciences, Elsevier, vol. 80(C).
    9. Guo, Wei & Liu, Qingfu & Luo, Zhidan & Tse, Yiuman, 2022. "Forecasts for international financial series with VMD algorithms," Journal of Asian Economics, Elsevier, vol. 80(C).
    10. Parth Daxesh Modi & Kamyar Arshi & Pertami J. Kunz & Abdelhak M. Zoubir, 2023. "A Data-driven Deep Learning Approach for Bitcoin Price Forecasting," Papers 2311.06280, arXiv.org.
    11. Jinghua Wang & Geoffrey M. Ngene & Yan Shi & Ann Nduati Mungai, 2023. "An Investigation of the Predictability of Uncertainty Indices on Bitcoin Returns," JRFM, MDPI, vol. 16(10), pages 1-12, October.
    12. Hao, Jun & Feng, Qianqian & Yuan, Jiaxin & Sun, Xiaolei & Li, Jianping, 2022. "A dynamic ensemble learning with multi-objective optimization for oil prices prediction," Resources Policy, Elsevier, vol. 79(C).
    13. Samuka Mohanty & Rajashree Dash, 2022. "Neural Network-Based Bitcoin Pricing Using a New Mutated Climb Monkey Algorithm with TOPSIS Analysis for Sustainable Development," Mathematics, MDPI, vol. 10(22), pages 1-23, November.
    14. Nagl, Maximilian, 2024. "Intricacy of cryptocurrency returns," Economics Letters, Elsevier, vol. 239(C).
    15. Kui Wang & Jie Wan & Gang Li & Hao Sun, 2022. "A Hybrid Algorithm-Level Ensemble Model for Imbalanced Credit Default Prediction in the Energy Industry," Energies, MDPI, vol. 15(14), pages 1-18, July.
    16. Liu, Qingfu & Tao, Zhenyi & Tse, Yiuman & Wang, Chuanjie, 2022. "Stock market prediction with deep learning: The case of China," Finance Research Letters, Elsevier, vol. 46(PA).
    17. Xiaohang Ren & Wenting Jiang & Qiang Ji & Pengxiang Zhai, 2024. "Seeing is believing: Forecasting crude oil price trend from the perspective of images," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(7), pages 2809-2821, November.
    18. Wei Liu & Yoshihisa Suzuki & Shuyi Du, 2024. "Forecasting the Stock Price of Listed Innovative SMEs Using Machine Learning Methods Based on Bayesian optimization: Evidence from China," Computational Economics, Springer;Society for Computational Economics, vol. 63(5), pages 2035-2068, May.
    19. Yilun Zhang & Yuping Song & Ying Peng & Hanchao Wang, 2024. "Volatility forecasting incorporating intraday positive and negative jumps based on deep learning model," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(7), pages 2749-2765, November.
    20. Yuze Li & Shangrong Jiang & Yunjie Wei & Shouyang Wang, 2021. "Take Bitcoin into your portfolio: a novel ensemble portfolio optimization framework for broad commodity assets," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-26, December.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2210.03469. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.