IDEAS home Printed from https://ideas.repec.org/a/eee/finlet/v20y2017icp68-74.html
   My bibliography  Save this article

Closed-form solutions for options with random initiation under asset price monitoring

Author

Listed:
  • Jun, Doobae
  • Ku, Hyejin

Abstract

This paper studies derivatives to prepare for financial risk from unexpected events. It is difficult for firms and financial institutions to hedge losses triggered by natural catastrophes such as earthquakes, by using derivative securities with fixed initiation and maturities. In this context, we consider an option that is initiated at random by an unexpected event, and moreover, is connected with a barrier of knock-in or knock-out type for asset price monitoring until the time of event. We derive closed-form valuation formulas for these options.

Suggested Citation

  • Jun, Doobae & Ku, Hyejin, 2017. "Closed-form solutions for options with random initiation under asset price monitoring," Finance Research Letters, Elsevier, vol. 20(C), pages 68-74.
  • Handle: RePEc:eee:finlet:v:20:y:2017:i:c:p:68-74
    DOI: 10.1016/j.frl.2016.09.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1544612316301647
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.frl.2016.09.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Goldman, M Barry & Sosin, Howard B & Gatto, Mary Ann, 1979. "Path Dependent Options: "Buy at the Low, Sell at the High"," Journal of Finance, American Finance Association, vol. 34(5), pages 1111-1127, December.
    2. Robert C. Merton, 2005. "Theory of rational option pricing," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 8, pages 229-288, World Scientific Publishing Co. Pte. Ltd..
    3. Jiang, I-Ming & Yang, Sheng-Yung & Liu, Yu-Hong & Wang, Alan T., 2013. "Valuation of double trigger catastrophe options with counterparty risk," The North American Journal of Economics and Finance, Elsevier, vol. 25(C), pages 226-242.
    4. Jaimungal, Sebastian & Wang, Tao, 2006. "Catastrophe options with stochastic interest rates and compound Poisson losses," Insurance: Mathematics and Economics, Elsevier, vol. 38(3), pages 469-483, June.
    5. Cho H. Hui, 1997. "Time‐dependent barrier option values," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 17(6), pages 667-688, September.
    6. Jarrow, Robert A., 2010. "A simple robust model for Cat bond valuation," Finance Research Letters, Elsevier, vol. 7(2), pages 72-79, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jun, Doobae & Ku, Hyejin, 2015. "Static hedging of chained-type barrier options," The North American Journal of Economics and Finance, Elsevier, vol. 33(C), pages 317-327.
    2. Jérôme Detemple, 1999. "American Options: Symmetry Properties," CIRANO Working Papers 99s-45, CIRANO.
    3. Bjork, Tomas, 2009. "Arbitrage Theory in Continuous Time," OUP Catalogue, Oxford University Press, edition 3, number 9780199574742.
    4. Marcos Escobar-Anel & Matt Davison & Yichen Zhu, 2022. "Derivatives-based portfolio decisions: an expected utility insight," Annals of Finance, Springer, vol. 18(2), pages 217-246, June.
    5. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    6. Koo, Eunho & Kim, Geonwoo, 2017. "Explicit formula for the valuation of catastrophe put option with exponential jump and default risk," Chaos, Solitons & Fractals, Elsevier, vol. 101(C), pages 1-7.
    7. Peter Buchen & Otto Konstandatos, 2009. "A New Approach to Pricing Double-Barrier Options with Arbitrary Payoffs and Exponential Boundaries," Applied Mathematical Finance, Taylor & Francis Journals, vol. 16(6), pages 497-515.
    8. Yu, Jun, 2015. "Catastrophe options with double compound Poisson processes," Economic Modelling, Elsevier, vol. 50(C), pages 291-297.
    9. S. G. Kou & Hui Wang, 2004. "Option Pricing Under a Double Exponential Jump Diffusion Model," Management Science, INFORMS, vol. 50(9), pages 1178-1192, September.
    10. Zhang, Jiayi & Zhou, Ke, 2024. "Analytical valuation of vulnerable chained options," The North American Journal of Economics and Finance, Elsevier, vol. 70(C).
    11. Wang, Xingchun, 2020. "Catastrophe equity put options with floating strike prices," The North American Journal of Economics and Finance, Elsevier, vol. 54(C).
    12. Mark Broadie & Jérôme Detemple, 1996. "Recent Advances in Numerical Methods for Pricing Derivative Securities," CIRANO Working Papers 96s-17, CIRANO.
    13. Eckhard Platen & David Taylor, 2016. "Loading Pricing of Catastrophe Bonds and Other Long-Dated, Insurance-Type Contracts," Papers 1610.09875, arXiv.org.
    14. Xingchun Wang, 2016. "The Pricing of Catastrophe Equity Put Options with Default Risk," International Review of Finance, International Review of Finance Ltd., vol. 16(2), pages 181-201, June.
    15. Ma, Zong-Gang & Ma, Chao-Qun, 2013. "Pricing catastrophe risk bonds: A mixed approximation method," Insurance: Mathematics and Economics, Elsevier, vol. 52(2), pages 243-254.
    16. Branislav Radak, 2017. "Chapman–Kolmogorov equations for multi-period equity-linked note with conditional coupons," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 4(01), pages 1-15, March.
    17. Ben Ammar, Semir & Braun, Alexander & Eling, Martin, 2015. "Alternative Risk Transfer and Insurance-Linked Securities: Trends, Challenges and New Market Opportunities," I.VW HSG Schriftenreihe, University of St.Gallen, Institute of Insurance Economics (I.VW-HSG), volume 56, number 56.
    18. Protter, Philip, 2001. "A partial introduction to financial asset pricing theory," Stochastic Processes and their Applications, Elsevier, vol. 91(2), pages 169-203, February.
    19. Rahul R. Marathe & Sarah M. Ryan, 2009. "Capacity expansion under a service‐level constraint for uncertain demand with lead times," Naval Research Logistics (NRL), John Wiley & Sons, vol. 56(3), pages 250-263, April.
    20. Karl Grosse-Erdmann & Fabien Heuwelyckx, 2015. "The pricing of lookback options and binomial approximation," Papers 1502.02819, arXiv.org.

    More about this item

    Keywords

    Option pricing; Random initiation; Barrier; Asset monitoring;
    All these keywords.

    JEL classification:

    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
    • G22 - Financial Economics - - Financial Institutions and Services - - - Insurance; Insurance Companies; Actuarial Studies

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:finlet:v:20:y:2017:i:c:p:68-74. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/frl .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.