IDEAS home Printed from https://ideas.repec.org/a/taf/apmtfi/v15y2008i4p387-402.html
   My bibliography  Save this article

Two Exotic Lookback Options

Author

Listed:
  • Hans-Peter Bermin
  • Peter Buchen
  • Otto Konstandatos

Abstract

This paper formally analyses two exotic options with lookback features, referred to as extreme spread lookback options and look-barrier options, first introduced by Bermin. The holder of such options receives partial protection from large price movements in the underlying, but at roughly the cost of a plain vanilla contract. This is achieved by increasing the leverage through either floating the strike price (for the case of extreme spread options) or introducing a partial barrier window (for the case of look-barrier options). We show how to statically replicate the prices of these hybrid exotic derivatives with more elementary European binary options and their images, using new methods first introduced by Buchen and Konstandatos. These methods allow considerable simplification in the analysis, leading to closed-form representations in the Black-Scholes framework.

Suggested Citation

  • Hans-Peter Bermin & Peter Buchen & Otto Konstandatos, 2008. "Two Exotic Lookback Options," Applied Mathematical Finance, Taylor & Francis Journals, vol. 15(4), pages 387-402.
  • Handle: RePEc:taf:apmtfi:v:15:y:2008:i:4:p:387-402
    DOI: 10.1080/13504860802012824
    as

    Download full text from publisher

    File URL: http://www.tandfonline.com/doi/abs/10.1080/13504860802012824
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/13504860802012824?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Goldman, M Barry & Sosin, Howard B & Gatto, Mary Ann, 1979. "Path Dependent Options: "Buy at the Low, Sell at the High"," Journal of Finance, American Finance Association, vol. 34(5), pages 1111-1127, December.
    2. Peter Buchen & Otto Konstandatos, 2005. "A New Method Of Pricing Lookback Options," Mathematical Finance, Wiley Blackwell, vol. 15(2), pages 245-259, April.
    3. Robert C. Merton, 2005. "Theory of rational option pricing," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 8, pages 229-288, World Scientific Publishing Co. Pte. Ltd..
    4. Conze, Antoine & Viswanathan, 1991. "Path Dependent Options: The Case of Lookback Options," Journal of Finance, American Finance Association, vol. 46(5), pages 1893-1907, December.
    5. Goldman, M Barry & Sosin, Howard B & Shepp, Lawrence A, 1979. "On Contingent Claims That Insure Ex-post Optimal Stock Market Timing," Journal of Finance, American Finance Association, vol. 34(2), pages 401-413, May.
    6. Wilmott,Paul & Howison,Sam & Dewynne,Jeff, 1995. "The Mathematics of Financial Derivatives," Cambridge Books, Cambridge University Press, number 9780521497893, October.
    7. Peter Buchen, 2004. "The pricing of dual-expiry exotics," Quantitative Finance, Taylor & Francis Journals, vol. 4(1), pages 101-108.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Konstandatos, Otto, 2020. "Fair-value analytical valuation of reset executive stock options consistent with IFRS9 requirements," Annals of Actuarial Science, Cambridge University Press, vol. 14(1), pages 188-218, March.
    2. Kim, Geonwoo & Jeon, Junkee, 2018. "Closed-form solutions for valuing partial lookback options with random initiation," Finance Research Letters, Elsevier, vol. 24(C), pages 321-327.
    3. Peter Buchen & Otto Konstandatos, 2009. "A New Approach to Pricing Double-Barrier Options with Arbitrary Payoffs and Exponential Boundaries," Applied Mathematical Finance, Taylor & Francis Journals, vol. 16(6), pages 497-515.
    4. Lee, Hangsuck & Kim, Eunchae & Ko, Bangwon, 2022. "Valuing lookback options with barrier," The North American Journal of Economics and Finance, Elsevier, vol. 60(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peter Buchen & Otto Konstandatos, 2009. "A New Approach to Pricing Double-Barrier Options with Arbitrary Payoffs and Exponential Boundaries," Applied Mathematical Finance, Taylor & Francis Journals, vol. 16(6), pages 497-515.
    2. Detlef Seese & Christof Weinhardt & Frank Schlottmann (ed.), 2008. "Handbook on Information Technology in Finance," International Handbooks on Information Systems, Springer, number 978-3-540-49487-4, November.
    3. Lee, Hangsuck & Kim, Eunchae & Ko, Bangwon, 2022. "Valuing lookback options with barrier," The North American Journal of Economics and Finance, Elsevier, vol. 60(C).
    4. Jiling Cao & Jeong-Hoon Kim & Xi Li & Wenjun Zhang, 2022. "Pricing Path-dependent Options under Stochastic Volatility via Mellin Transform," Papers 2205.00573, arXiv.org.
    5. Bjork, Tomas, 2009. "Arbitrage Theory in Continuous Time," OUP Catalogue, Oxford University Press, edition 3, number 9780199574742.
    6. Cao, Jiling & Kim, Jeong-Hoon & Li, Xi & Zhang, Wenjun, 2023. "Valuation of barrier and lookback options under hybrid CEV and stochastic volatility," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 208(C), pages 660-676.
    7. Otto Konstandatos & Timothy J Kyng, 2012. "Real Options Analysis for Commodity Based Mining Enterprises with Compound and Barrier Features," Published Paper Series 2012-3, Finance Discipline Group, UTS Business School, University of Technology, Sydney.
    8. Ha, Mijin & Kim, Donghyun & Yoon, Ji-Hun, 2024. "Valuing of timer path-dependent options," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 215(C), pages 208-227.
    9. Sun-Yong Choi & Ji-Hun Yoon & Junkee Jeon, 2019. "Pricing of Fixed-Strike Lookback Options on Assets with Default Risk," Mathematical Problems in Engineering, Hindawi, vol. 2019, pages 1-10, January.
    10. Konstandatos, Otto, 2020. "Fair-value analytical valuation of reset executive stock options consistent with IFRS9 requirements," Annals of Actuarial Science, Cambridge University Press, vol. 14(1), pages 188-218, March.
    11. S. G. Kou & Hui Wang, 2004. "Option Pricing Under a Double Exponential Jump Diffusion Model," Management Science, INFORMS, vol. 50(9), pages 1178-1192, September.
    12. Lee, Hangsuck & Ha, Hongjun & Lee, Minha, 2023. "Partial quanto lookback options," The North American Journal of Economics and Finance, Elsevier, vol. 64(C).
    13. Peter Buchen & Hamish Malloch, 2014. "CLA's, PLA's and a new method for pricing general passport options," Quantitative Finance, Taylor & Francis Journals, vol. 14(7), pages 1201-1209, July.
    14. Dmitry Davydov & Vadim Linetsky, 2001. "Pricing and Hedging Path-Dependent Options Under the CEV Process," Management Science, INFORMS, vol. 47(7), pages 949-965, July.
    15. Kim, Geonwoo & Jeon, Junkee, 2018. "Closed-form solutions for valuing partial lookback options with random initiation," Finance Research Letters, Elsevier, vol. 24(C), pages 321-327.
    16. Jérôme Detemple, 1999. "American Options: Symmetry Properties," CIRANO Working Papers 99s-45, CIRANO.
    17. Marcos Escobar-Anel & Matt Davison & Yichen Zhu, 2022. "Derivatives-based portfolio decisions: an expected utility insight," Annals of Finance, Springer, vol. 18(2), pages 217-246, June.
    18. Leunglung Chan & Song-Ping Zhu, 2014. "An exact and explicit formula for pricing lookback options with regime switching," Papers 1407.4864, arXiv.org.
    19. Benjamin Marcus & Chris K. Anderson, 2006. "Online Low-Price Guarantees---A Real Options Analysis," Operations Research, INFORMS, vol. 54(6), pages 1041-1050, December.
    20. Yang, Zhaoqiang, 2020. "Default probability of American lookback option in a mixed jump-diffusion model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:apmtfi:v:15:y:2008:i:4:p:387-402. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RAMF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.