IDEAS home Printed from https://ideas.repec.org/a/eee/ecmode/v50y2015icp291-297.html
   My bibliography  Save this article

Catastrophe options with double compound Poisson processes

Author

Listed:
  • Yu, Jun

Abstract

We study the following catastrophe option pricing model with double jump processes: (i) Stock process of an insurance company which sells catastrophe option are described through an exponential jump-diffusion process. (ii) All jump terms are modeled by two compound Poisson processes. One is correlated to the catastrophe loss process, and models the jumps of a stock due to catastrophe events. Another one models the jumps of the stock process caused by other financial market risks. For the model, we obtain explicit analytical formulas for the price of the put option, and then use several numerical examples based on Monte Carlo simulation to show its reasonability.

Suggested Citation

  • Yu, Jun, 2015. "Catastrophe options with double compound Poisson processes," Economic Modelling, Elsevier, vol. 50(C), pages 291-297.
  • Handle: RePEc:eee:ecmode:v:50:y:2015:i:c:p:291-297
    DOI: 10.1016/j.econmod.2015.07.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0264999315001893
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.econmod.2015.07.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lin, X. Sheldon & Wang, Tao, 2009. "Pricing perpetual American catastrophe put options: A penalty function approach," Insurance: Mathematics and Economics, Elsevier, vol. 44(2), pages 287-295, April.
    2. J. Michael Harrison & Stanley R. Pliska, 1981. "Martingales and Stochastic Integrals in the Theory of Continous Trading," Discussion Papers 454, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
    3. Cox, Samuel H. & Fairchild, Joseph R. & Pedersen, Hal W., 2004. "Valuation of structured risk management products," Insurance: Mathematics and Economics, Elsevier, vol. 34(2), pages 259-272, April.
    4. John C. Cox & Jonathan E. Ingersoll Jr. & Stephen A. Ross, 2005. "A Theory Of The Term Structure Of Interest Rates," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 5, pages 129-164, World Scientific Publishing Co. Pte. Ltd..
    5. Jaimungal, Sebastian & Wang, Tao, 2006. "Catastrophe options with stochastic interest rates and compound Poisson losses," Insurance: Mathematics and Economics, Elsevier, vol. 38(3), pages 469-483, June.
    6. Cox, John C. & Ross, Stephen A., 1976. "The valuation of options for alternative stochastic processes," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 145-166.
    7. Chang, Lung-fu & Hung, Mao-wei, 2009. "Analytical valuation of catastrophe equity options with negative exponential jumps," Insurance: Mathematics and Economics, Elsevier, vol. 44(1), pages 59-69, February.
    8. Vasicek, Oldrich, 1977. "An equilibrium characterization of the term structure," Journal of Financial Economics, Elsevier, vol. 5(2), pages 177-188, November.
    9. Harrison, J. Michael & Kreps, David M., 1979. "Martingales and arbitrage in multiperiod securities markets," Journal of Economic Theory, Elsevier, vol. 20(3), pages 381-408, June.
    10. Vasicek, Oldrich Alfonso, 1977. "Abstract: An Equilibrium Characterization of the Term Structure," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 12(4), pages 627-627, November.
    11. Harrison, J. Michael & Pliska, Stanley R., 1981. "Martingales and stochastic integrals in the theory of continuous trading," Stochastic Processes and their Applications, Elsevier, vol. 11(3), pages 215-260, August.
    12. Merton, Robert C., 1976. "Option pricing when underlying stock returns are discontinuous," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 125-144.
    13. Jiang, I-Ming & Yang, Sheng-Yung & Liu, Yu-Hong & Wang, Alan T., 2013. "Valuation of double trigger catastrophe options with counterparty risk," The North American Journal of Economics and Finance, Elsevier, vol. 25(C), pages 226-242.
    14. Hull, John C & White, Alan D, 1987. "The Pricing of Options on Assets with Stochastic Volatilities," Journal of Finance, American Finance Association, vol. 42(2), pages 281-300, June.
    15. Lin, Shih-Kuei & Chang, Chia-Chien & Powers, Michael R., 2009. "The valuation of contingent capital with catastrophe risks," Insurance: Mathematics and Economics, Elsevier, vol. 45(1), pages 65-73, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zaevski, Tsvetelin S. & Kounchev, Ognyan & Savov, Mladen, 2019. "Two frameworks for pricing defaultable derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 123(C), pages 309-319.
    2. Bi, Hongwei & Wang, Guanying & Wang, Xingchun, 2019. "Valuation of catastrophe equity put options with correlated default risk and jump risk," Finance Research Letters, Elsevier, vol. 29(C), pages 323-329.
    3. Koo, Eunho & Kim, Geonwoo, 2017. "Explicit formula for the valuation of catastrophe put option with exponential jump and default risk," Chaos, Solitons & Fractals, Elsevier, vol. 101(C), pages 1-7.
    4. Wang, Xingchun, 2016. "Catastrophe equity put options with target variance," Insurance: Mathematics and Economics, Elsevier, vol. 71(C), pages 79-86.
    5. Wang, Xingchun, 2020. "Catastrophe equity put options with floating strike prices," The North American Journal of Economics and Finance, Elsevier, vol. 54(C).
    6. Wang, Xingchun, 2019. "Valuation of new-designed contracts for catastrophe risk management," The North American Journal of Economics and Finance, Elsevier, vol. 50(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Burnecki, Krzysztof & Giuricich, Mario Nicoló & Palmowski, Zbigniew, 2019. "Valuation of contingent convertible catastrophe bonds — The case for equity conversion," Insurance: Mathematics and Economics, Elsevier, vol. 88(C), pages 238-254.
    2. Wang, Guanying & Wang, Xingchun & Shao, Xinjian, 2022. "Exchange options for catastrophe risk management," The North American Journal of Economics and Finance, Elsevier, vol. 59(C).
    3. Mark Broadie & Jerome B. Detemple, 2004. "ANNIVERSARY ARTICLE: Option Pricing: Valuation Models and Applications," Management Science, INFORMS, vol. 50(9), pages 1145-1177, September.
    4. Mondher Bellalah, 2009. "Derivatives, Risk Management & Value," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 7175, December.
    5. Carl Chiarella & Xue-Zhong He & Christina Sklibosios Nikitopoulos, 2015. "Derivative Security Pricing," Dynamic Modeling and Econometrics in Economics and Finance, Springer, edition 127, number 978-3-662-45906-5, May.
    6. Wang, Xingchun, 2016. "Catastrophe equity put options with target variance," Insurance: Mathematics and Economics, Elsevier, vol. 71(C), pages 79-86.
    7. Bjork, Tomas, 2009. "Arbitrage Theory in Continuous Time," OUP Catalogue, Oxford University Press, edition 3, number 9780199574742.
    8. Koo, Eunho & Kim, Geonwoo, 2017. "Explicit formula for the valuation of catastrophe put option with exponential jump and default risk," Chaos, Solitons & Fractals, Elsevier, vol. 101(C), pages 1-7.
    9. repec:dau:papers:123456789/5374 is not listed on IDEAS
    10. Ma, Zong-Gang & Ma, Chao-Qun, 2013. "Pricing catastrophe risk bonds: A mixed approximation method," Insurance: Mathematics and Economics, Elsevier, vol. 52(2), pages 243-254.
    11. Braun, Alexander, 2011. "Pricing catastrophe swaps: A contingent claims approach," Insurance: Mathematics and Economics, Elsevier, vol. 49(3), pages 520-536.
    12. Geman, Hélyette, 2005. "From measure changes to time changes in asset pricing," Journal of Banking & Finance, Elsevier, vol. 29(11), pages 2701-2722, November.
    13. Suresh M. Sundaresan, 2000. "Continuous‐Time Methods in Finance: A Review and an Assessment," Journal of Finance, American Finance Association, vol. 55(4), pages 1569-1622, August.
    14. Sanjay K. Nawalkha & Xiaoyang Zhuo, 2022. "A Theory of Equivalent Expectation Measures for Contingent Claim Returns," Journal of Finance, American Finance Association, vol. 77(5), pages 2853-2906, October.
    15. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    16. repec:uts:finphd:40 is not listed on IDEAS
    17. Duffie, Darrell, 2003. "Intertemporal asset pricing theory," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, edition 1, volume 1, chapter 11, pages 639-742, Elsevier.
    18. Melenberg, B. & Werker, B.J.M., 1996. "On the Pricing of Options in Incomplete Markets," Discussion Paper 1996-19, Tilburg University, Center for Economic Research.
    19. Shane Miller, 2007. "Pricing of Contingent Claims Under the Real-World Measure," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 2-2007, January-A.
    20. Jean-Paul Décamps, 1993. "Valorisation de produits obligataires dans un modéle d'équilibre général en temps discret," Annals of Economics and Statistics, GENES, issue 31, pages 73-100.
    21. Wang, Xingchun, 2020. "Catastrophe equity put options with floating strike prices," The North American Journal of Economics and Finance, Elsevier, vol. 54(C).
    22. Kevin John Fergusson, 2018. "Less-Expensive Pricing and Hedging of Extreme-Maturity Interest Rate Derivatives and Equity Index Options Under the Real-World Measure," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 3-2018, January-A.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecmode:v:50:y:2015:i:c:p:291-297. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/30411 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.