IDEAS home Printed from https://ideas.repec.org/a/eee/finana/v17y2008i2p382-395.html
   My bibliography  Save this article

Conditional VaR using EVT - Towards a planned margin scheme

Author

Listed:
  • Bhattacharyya, Malay
  • Ritolia, Gopal

Abstract

This paper constructs a robust Value-at-Risk (VaR) measure for the Indian stock markets by combining two well-known facts about equity return time series -- dynamic volatility resulting in the well-recognized phenomenon of volatility clustering, and non-normality giving rise to fat tails of the return distribution. While the phenomenon of volatility dynamics has been extensively studied using GARCH model and its many relatives, the application of Extreme Value Theory (EVT) is relatively recent in tracking extreme losses in the study of risk measurement. There are recent applications of Extreme Value Theory to estimate the unexpected losses due to extreme events and hence modify the current methodology of VaR. Extreme value theory (EVT) has been used to analyze financial data showing clear non-normal behavior. We combine the two methodologies to come up with a robust model with much enhanced predictive abilities. A robust model would obviate the need for imposing special ad hoc margins by the regulator in times of extreme volatility. A rule based margin system would increase efficiency of the price discovery process and also the market integrity with the regulator no longer seen as managing volatility.

Suggested Citation

  • Bhattacharyya, Malay & Ritolia, Gopal, 2008. "Conditional VaR using EVT - Towards a planned margin scheme," International Review of Financial Analysis, Elsevier, vol. 17(2), pages 382-395.
  • Handle: RePEc:eee:finana:v:17:y:2008:i:2:p:382-395
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1057-5219(06)00068-8
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bollerslev, Tim & Chou, Ray Y. & Kroner, Kenneth F., 1992. "ARCH modeling in finance : A review of the theory and empirical evidence," Journal of Econometrics, Elsevier, vol. 52(1-2), pages 5-59.
    2. McNeil, Alexander J. & Frey, Rudiger, 2000. "Estimation of tail-related risk measures for heteroscedastic financial time series: an extreme value approach," Journal of Empirical Finance, Elsevier, vol. 7(3-4), pages 271-300, November.
    3. Ser-Huang Poon & Clive W.J. Granger, 2003. "Forecasting Volatility in Financial Markets: A Review," Journal of Economic Literature, American Economic Association, vol. 41(2), pages 478-539, June.
    4. McNeil, Alexander J., 1997. "Estimating the Tails of Loss Severity Distributions Using Extreme Value Theory," ASTIN Bulletin, Cambridge University Press, vol. 27(1), pages 117-137, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Szubzda Filip & Chlebus Marcin, 2019. "Comparison of Block Maxima and Peaks Over Threshold Value-at-Risk models for market risk in various economic conditions," Central European Economic Journal, Sciendo, vol. 6(53), pages 70-85, January.
    2. Wilson Calmon & Eduardo Ferioli & Davi Lettieri & Johann Soares & Adrian Pizzinga, 2021. "An Extensive Comparison of Some Well‐Established Value at Risk Methods," International Statistical Review, International Statistical Institute, vol. 89(1), pages 148-166, April.
    3. Sahamkhadam, Maziar & Stephan, Andreas & Östermark, Ralf, 2018. "Portfolio optimization based on GARCH-EVT-Copula forecasting models," International Journal of Forecasting, Elsevier, vol. 34(3), pages 497-506.
    4. Assaf, A., 2009. "Extreme observations and risk assessment in the equity markets of MENA region: Tail measures and Value-at-Risk," International Review of Financial Analysis, Elsevier, vol. 18(3), pages 109-116, June.
    5. Yun Feng & Weijie Hou & Yuping Song, 2024. "Tail risk forecasting and its application to margin requirements in the commodity futures market," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(5), pages 1513-1529, August.
    6. Jolanta Tamošaitienė & Vahidreza Yousefi & Hamed Tabasi, 2021. "Project Portfolio Construction Using Extreme Value Theory," Sustainability, MDPI, vol. 13(2), pages 1-13, January.
    7. Marius Galabe Sampid & Haslifah M Hasim & Hongsheng Dai, 2018. "Refining value-at-risk estimates using a Bayesian Markov-switching GJR-GARCH copula-EVT model," PLOS ONE, Public Library of Science, vol. 13(6), pages 1-33, June.
    8. Sree Vinutha Venkataraman & S. V. D. Nageswara Rao, 2016. "Estimation of dynamic VaR using JSU and PIV distributions," Risk Management, Palgrave Macmillan, vol. 18(2), pages 111-134, August.
    9. Marco Bee & Fabrizio Miorelli, 2010. "Dynamic VaR models and the Peaks over Threshold method for market risk measurement: an empirical investigation during a financial crisis," Department of Economics Working Papers 1009, Department of Economics, University of Trento, Italia.
    10. Laura Garcia-Jorcano & Alfonso Novales, 2020. "A dominance approach for comparing the performance of VaR forecasting models," Computational Statistics, Springer, vol. 35(3), pages 1411-1448, September.
    11. Xiao, Yang, 2020. "The risk spillovers from the Chinese stock market to major East Asian stock markets: A MSGARCH-EVT-copula approach," International Review of Economics & Finance, Elsevier, vol. 65(C), pages 173-186.
    12. Uribe Gil, Jorge Mario & Ulloa Villegas, Inés Maria, 2012. "La medición del riesgo en eventos extremos. Una revisión metodológica en contexto," Revista Lecturas de Economía, Universidad de Antioquia, CIE, June.
    13. Bhattacharyya, Malay & Madhav R, Siddarth, 2012. "A Comparison of VaR Estimation Procedures for Leptokurtic Equity Index Returns," MPRA Paper 54189, University Library of Munich, Germany.
    14. Hamed Tabasi & Vahidreza Yousefi & Jolanta Tamošaitienė & Foroogh Ghasemi, 2019. "Estimating Conditional Value at Risk in the Tehran Stock Exchange Based on the Extreme Value Theory Using GARCH Models," Administrative Sciences, MDPI, vol. 9(2), pages 1-17, May.
    15. Ahmed, Rizwan & Chaudhry, Sajid M. & Kumpamool, Chamaiporn & Benjasak, Chonlakan, 2022. "Tail risk, systemic risk and spillover risk of crude oil and precious metals," Energy Economics, Elsevier, vol. 112(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lang, Korbinian & Auer, Benjamin R., 2020. "The economic and financial properties of crude oil: A review," The North American Journal of Economics and Finance, Elsevier, vol. 52(C).
    2. Mudakkar, Syeda Rabab & Uppal, Jamshed Y. & Zaman, Khalid & Naseem, Imran & Shah, Ghias Ud Din, 2013. "Foreign exchange risk in a managed float regime: A case study of Pakistani rupee," Economic Modelling, Elsevier, vol. 35(C), pages 409-417.
    3. Bhattacharyya, Malay & Chaudhary, Abhishek & Yadav, Gaurav, 2008. "Conditional VaR estimation using Pearson's type IV distribution," European Journal of Operational Research, Elsevier, vol. 191(2), pages 386-397, December.
    4. Manel Youssef & Lotfi Belkacem & Khaled Mokni, 2015. "Extreme Value Theory and long-memory-GARCH Framework: Application to Stock Market," International Journal of Economics and Empirical Research (IJEER), The Economics and Social Development Organization (TESDO), vol. 3(8), pages 371-388, August.
    5. Berens, Tobias & Weiß, Gregor N.F. & Wied, Dominik, 2015. "Testing for structural breaks in correlations: Does it improve Value-at-Risk forecasting?," Journal of Empirical Finance, Elsevier, vol. 32(C), pages 135-152.
    6. Alex Huang, 2013. "Value at risk estimation by quantile regression and kernel estimator," Review of Quantitative Finance and Accounting, Springer, vol. 41(2), pages 225-251, August.
    7. Stentoft, Lars, 2005. "Pricing American options when the underlying asset follows GARCH processes," Journal of Empirical Finance, Elsevier, vol. 12(4), pages 576-611, September.
    8. Dingshi Tian & Zongwu Cai & Ying Fang, 2018. "Econometric Modeling of Risk Measures: A Selective Review of the Recent Literature," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 201807, University of Kansas, Department of Economics, revised Oct 2018.
    9. Herrera, R. & Clements, A.E., 2018. "Point process models for extreme returns: Harnessing implied volatility," Journal of Banking & Finance, Elsevier, vol. 88(C), pages 161-175.
    10. Salisu, Afees A. & Demirer, Riza & Gupta, Rangan, 2022. "Financial turbulence, systemic risk and the predictability of stock market volatility," Global Finance Journal, Elsevier, vol. 52(C).
    11. Abdmoulah, Walid, 2010. "Testing the evolving efficiency of Arab stock markets," International Review of Financial Analysis, Elsevier, vol. 19(1), pages 25-34, January.
    12. Stavros Degiannakis & Alexandra Livada & Epaminondas Panas, 2008. "Rolling-sampled parameters of ARCH and Levy-stable models," Applied Economics, Taylor & Francis Journals, vol. 40(23), pages 3051-3067.
    13. Koopman, Siem Jan & Jungbacker, Borus & Hol, Eugenie, 2005. "Forecasting daily variability of the S&P 100 stock index using historical, realised and implied volatility measurements," Journal of Empirical Finance, Elsevier, vol. 12(3), pages 445-475, June.
    14. Lars Stentoft, 2008. "Option Pricing using Realized Volatility," CREATES Research Papers 2008-13, Department of Economics and Business Economics, Aarhus University.
    15. Ercan Balaban & Charalambos Th. Constantinou, 2006. "Volatility clustering and event-induced volatility: Evidence from UK mergers and acquisitions," The European Journal of Finance, Taylor & Francis Journals, vol. 12(5), pages 449-453.
    16. Gencay, Ramazan & Selcuk, Faruk & Ulugulyagci, Abdurrahman, 2003. "High volatility, thick tails and extreme value theory in value-at-risk estimation," Insurance: Mathematics and Economics, Elsevier, vol. 33(2), pages 337-356, October.
    17. Turan Bali & Panayiotis Theodossiou, 2007. "A conditional-SGT-VaR approach with alternative GARCH models," Annals of Operations Research, Springer, vol. 151(1), pages 241-267, April.
    18. Buhlmann, Peter & McNeil, Alexander J., 2002. "An algorithm for nonparametric GARCH modelling," Computational Statistics & Data Analysis, Elsevier, vol. 40(4), pages 665-683, October.
    19. Antonakakis, Nikolaos & Darby, Julia, 2012. "Forecasting Volatility in Developing Countries' Nominal Exchange Returns," MPRA Paper 40875, University Library of Munich, Germany.
    20. Malay Bhattacharyya & Dileep Kumar M & Ramesh Kumar, 2009. "Optimal sampling frequency for volatility forecast models for the Indian stock markets," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 28(1), pages 38-54.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:finana:v:17:y:2008:i:2:p:382-395. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/620166 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.