IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v98y2016icp135-145.html
   My bibliography  Save this article

Comparison between exergy and energy analysis for biodiesel production

Author

Listed:
  • Amelio, A.
  • Van de Voorde, T.
  • Creemers, C.
  • Degrève, J.
  • Darvishmanesh, S.
  • Luis, P.
  • Van der Bruggen, B.

Abstract

This study investigates the exergy concept for use in chemical engineering applications, and compares the energy and exergy methodology for the production process of biodiesel.

Suggested Citation

  • Amelio, A. & Van de Voorde, T. & Creemers, C. & Degrève, J. & Darvishmanesh, S. & Luis, P. & Van der Bruggen, B., 2016. "Comparison between exergy and energy analysis for biodiesel production," Energy, Elsevier, vol. 98(C), pages 135-145.
  • Handle: RePEc:eee:energy:v:98:y:2016:i:c:p:135-145
    DOI: 10.1016/j.energy.2016.01.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544216000281
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2016.01.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Emilio Font de Mora & César Torres & Antonio Valero, 2015. "Thermoeconomic Analysis of Biodiesel Production from Used Cooking Oils," Sustainability, MDPI, vol. 7(5), pages 1-15, May.
    2. Talens, Laura & Villalba, Gara & Gabarrell, Xavier, 2007. "Exergy analysis applied to biodiesel production," Resources, Conservation & Recycling, Elsevier, vol. 51(2), pages 397-407.
    3. Szargut, Jan, 1989. "Chemical exergies of the elements," Applied Energy, Elsevier, vol. 32(4), pages 269-286.
    4. Querol, E. & Gonzalez-Regueral, B. & Ramos, A. & Perez-Benedito, J.L., 2011. "Novel application for exergy and thermoeconomic analysis of processes simulated with Aspen Plus®," Energy, Elsevier, vol. 36(2), pages 964-974.
    5. Abdollahi-Demneh, Farzad & Moosavian, Mohammad Ali & Omidkhah, Mohammad Reza & Bahmanyar, Hossein, 2011. "Calculating exergy in flowsheeting simulators: A HYSYS implementation," Energy, Elsevier, vol. 36(8), pages 5320-5327.
    6. Blanco-Marigorta, A.M. & Suárez-Medina, J. & Vera-Castellano, A., 2013. "Exergetic analysis of a biodiesel production process from Jatropha curcas," Applied Energy, Elsevier, vol. 101(C), pages 218-225.
    7. Coronado, Christian Rodriguez & Tuna, Celso Eduardo & Zanzi, Rolando & Vane, Lucas F. & Silveira, José Luz, 2013. "Development of a thermoeconomic methodology for the optimization of biodiesel production—Part I: Biodiesel plant and thermoeconomic functional diagram," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 138-146.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. José A. León & Gisela Montero & Marcos A. Coronado & José R. Ayala & Daniela G. Montes & Laura J. Pérez & Lisandra Quintana & Jesús M. Armenta, 2022. "Thermodynamic Analysis of Waste Vegetable Oil Conversion to Biodiesel with Solar Energy," Energies, MDPI, vol. 15(5), pages 1-17, March.
    2. Fazal, M.A. & Jakeria, M.R. & Haseeb, A.S.M.A. & Rubaiee, Saeed, 2017. "Effect of antioxidants on the stability and corrosiveness of palm biodiesel upon exposure of different metals," Energy, Elsevier, vol. 135(C), pages 220-226.
    3. Fallahi, Alireza & Farzad, Somayeh & Mohtasebi, Seyed Saeid & Mandegari, Mohsen & Görgens, Johann F. & Gupta, Vijai Kumar & Lam, Su Shiung & Tabatabaei, Meisam & Aghbashlo, Mortaza, 2021. "Sustainability assessment of sugarcane residues valorization to biobutadiene by exergy and exergoeconomic evaluation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    4. Sui, Meng & Li, Fashe, 2019. "Effect of TEPA on oxidation stability and metal ion content of biodiesel," Renewable Energy, Elsevier, vol. 143(C), pages 352-358.
    5. Sara Almasi & Barat Ghobadian & Gholam Hassan Najafi & Talal Yusaf & Masoud Dehghani Soufi & Seyed Salar Hoseini, 2019. "Optimization of an Ultrasonic-Assisted Biodiesel Production Process from One Genotype of Rapeseed (TERI (OE) R-983) as a Novel Feedstock Using Response Surface Methodology," Energies, MDPI, vol. 12(14), pages 1-14, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Khoobbakht, Golmohammad & Kheiralipour, Kamran & Rasouli, Hamed & Rafiee, Mojtaba & Hadipour, Mehrdad & Karimi, Mahmoud, 2020. "Experimental exergy analysis of transesterification in biodiesel production," Energy, Elsevier, vol. 196(C).
    2. Francesco Witte & Mathias Hofmann & Julius Meier & Ilja Tuschy & George Tsatsaronis, 2022. "Generic and Open-Source Exergy Analysis—Extending the Simulation Framework TESPy," Energies, MDPI, vol. 15(11), pages 1-27, June.
    3. Ghannadzadeh, Ali & Thery-Hetreux, Raphaële & Baudouin, Olivier & Baudet, Philippe & Floquet, Pascal & Joulia, Xavier, 2012. "General methodology for exergy balance in ProSimPlus® process simulator," Energy, Elsevier, vol. 44(1), pages 38-59.
    4. Gollangi, Raju & K, NagamalleswaraRao, 2022. "Energy, exergy analysis of conceptually designed monochloromethane production process from hydrochlorination of methanol," Energy, Elsevier, vol. 239(PA).
    5. Whiting, Kai & Carmona, Luis Gabriel & Sousa, Tânia, 2017. "A review of the use of exergy to evaluate the sustainability of fossil fuels and non-fuel mineral depletion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 202-211.
    6. Gholami, Ali & Hajinezhad, Ahmad & Pourfayaz, Fathollah & Ahmadi, Mohammad Hossein, 2018. "The effect of hydrodynamic and ultrasonic cavitation on biodiesel production: An exergy analysis approach," Energy, Elsevier, vol. 160(C), pages 478-489.
    7. Olusegun David Samuel & Peter A. Aigba & Thien Khanh Tran & H. Fayaz & Carlo Pastore & Oguzhan Der & Ali Erçetin & Christopher C. Enweremadu & Ahmad Mustafa, 2023. "Comparison of the Techno-Economic and Environmental Assessment of Hydrodynamic Cavitation and Mechanical Stirring Reactors for the Production of Sustainable Hevea brasiliensis Ethyl Ester," Sustainability, MDPI, vol. 15(23), pages 1-27, November.
    8. Stanek, Wojciech & Czarnowska, Lucyna, 2018. "Thermo-ecological cost – Szargut's proposal on exergy and ecology connection," Energy, Elsevier, vol. 165(PB), pages 1050-1059.
    9. Hao, Xiaoqing & An, Haizhong & Qi, Hai & Gao, Xiangyun, 2016. "Evolution of the exergy flow network embodied in the global fossil energy trade: Based on complex network," Applied Energy, Elsevier, vol. 162(C), pages 1515-1522.
    10. Chen, G.Q. & Qi, Z.H., 2007. "Systems account of societal exergy utilization: China 2003," Ecological Modelling, Elsevier, vol. 208(2), pages 102-118.
    11. Khalili-Garakani, Amirhossein & Ivakpour, Javad & Kasiri, Norollah, 2016. "Evolutionary synthesis of optimum light ends recovery unit with exergy analysis application," Applied Energy, Elsevier, vol. 168(C), pages 507-522.
    12. Kadam, Sambhaji T. & Gkouletsos, Dimitris & Hassan, Ibrahim & Rahman, Mohammad Azizur & Kyriakides, Alexios-Spyridon & Papadopoulos, Athanasios I. & Seferlis, Panos, 2020. "Investigation of binary, ternary and quaternary mixtures across solution heat exchanger used in absorption refrigeration and process modifications to improve cycle performance," Energy, Elsevier, vol. 198(C).
    13. Charalampos Michalakakis & Jeremy Fouillou & Richard C. Lupton & Ana Gonzalez Hernandez & Jonathan M. Cullen, 2021. "Calculating the chemical exergy of materials," Journal of Industrial Ecology, Yale University, vol. 25(2), pages 274-287, April.
    14. Blanco-Marigorta, A.M. & Suárez-Medina, J. & Vera-Castellano, A., 2013. "Exergetic analysis of a biodiesel production process from Jatropha curcas," Applied Energy, Elsevier, vol. 101(C), pages 218-225.
    15. Jamali-Zghal, N. & Le Corre, O. & Lacarrière, B., 2014. "Mineral resource assessment: Compliance between emergy and exergy respecting Odum's hierarchy concept," Ecological Modelling, Elsevier, vol. 272(C), pages 208-219.
    16. Chen, G.Q. & Chen, B., 2009. "Extended-exergy analysis of the Chinese society," Energy, Elsevier, vol. 34(9), pages 1127-1144.
    17. Li, Sheng & Jin, Hongguang & Gao, Lin & Zhang, Xiaosong, 2014. "Exergy analysis and the energy saving mechanism for coal to synthetic/substitute natural gas and power cogeneration system without and with CO2 capture," Applied Energy, Elsevier, vol. 130(C), pages 552-561.
    18. Khalili-Garakani, Amirhossein & Ivakpour, Javad & Kasiri, Norollah, 2016. "A new search space reduction method based on exergy analysis for distillation columns synthesis," Energy, Elsevier, vol. 116(P1), pages 795-811.
    19. Chang, Chenglin & Chen, Xiaolu & Wang, Yufei & Feng, Xiao, 2017. "Simultaneous optimization of multi-plant heat integration using intermediate fluid circles," Energy, Elsevier, vol. 121(C), pages 306-317.
    20. Chun Hsion Lim & Wei Xin Chua & Yi Wen Pang & Bing Shen How & Wendy Pei Qin Ng & Sin Yong Teng & Wei Dong Leong & Sue Lin Ngan & Hon Loong Lam, 2020. "A Diverse and Sustainable Biodiesel Supply Chain Optimisation Model Based on Properties Integration," Sustainability, MDPI, vol. 12(20), pages 1-18, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:98:y:2016:i:c:p:135-145. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.