IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v95y2016icp211-222.html
   My bibliography  Save this article

Investigation of a turbulent premixed combustion flame in a backward-facing step combustor; effect of equivalence ratio

Author

Listed:
  • Nemitallah, Medhat A.
  • Kewlani, Gaurav
  • Hong, Seunghyuck
  • Shanbhogue, Santosh J.
  • Habib, Mohamed A.
  • Ghoniem, Ahmed F.

Abstract

In the present study, LES (large-eddy simulation) is utilized to analyze lean-premixed propane-air flame stability in a backward-step combustor over a range of equivalence ratio. The artificially thickened flame approach coupled with a reduced reaction mechanism is incorporated for modeling the turbulence–combustion interactions at small scales. Simulation results are compared to high-speed PIV (particle image velocimetry) measurements for validation. The results show that the numerical framework captures different topological flow features effectively and with reasonable accuracy, for stable flame configurations, but some quantitative differences exist. The RZ (recirculation zone) is formed of a primary eddy and a secondary eddy and its overall size is significantly impacted by the equivalence ratio. The temperature distribution inside the recirculation zone is highly non-uniform, with much lower values observed close to the backward step and the bottom wall. The mixture distribution inside the RZ is also non-uniform because of mixing with reactants and heat loss to the walls. The flame is stabilized closer to the backward step as the equivalence ratio increases. At lower fuel fractions, the flame lifts off the step starting at equivalence ratio of 0.63 and the lift off distance is increased while the equivalence ratio is lowered.

Suggested Citation

  • Nemitallah, Medhat A. & Kewlani, Gaurav & Hong, Seunghyuck & Shanbhogue, Santosh J. & Habib, Mohamed A. & Ghoniem, Ahmed F., 2016. "Investigation of a turbulent premixed combustion flame in a backward-facing step combustor; effect of equivalence ratio," Energy, Elsevier, vol. 95(C), pages 211-222.
  • Handle: RePEc:eee:energy:v:95:y:2016:i:c:p:211-222
    DOI: 10.1016/j.energy.2015.12.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544215016527
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2015.12.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gao, Xuan & Duan, Fei & Lim, Seng Chuan & Yip, Mee Sin, 2013. "NOx formation in hydrogen–methane turbulent diffusion flame under the moderate or intense low-oxygen dilution conditions," Energy, Elsevier, vol. 59(C), pages 559-569.
    2. Yu, Byeonghun & Lee, Seungro & Lee, Chang-Eon, 2015. "Study of NOx emission characteristics in CH4/air non-premixed flames with exhaust gas recirculation," Energy, Elsevier, vol. 91(C), pages 119-127.
    3. Li, Yueh-Heng & Chen, Guan-Bang & Lin, Yi-Chieh & Chao, Yei-Chin, 2015. "Effects of flue gas recirculation on the premixed oxy-methane flames in atmospheric condition," Energy, Elsevier, vol. 89(C), pages 845-857.
    4. Habib, Mohamed A. & Nemitallah, Medhat A. & Ahmed, Pervez & Sharqawy, Mostafa H. & Badr, Hassan M. & Muhammad, Inam & Yaqub, Mohamed, 2015. "Experimental analysis of oxygen-methane combustion inside a gas turbine reactor under various operating conditions," Energy, Elsevier, vol. 86(C), pages 105-114.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yilmaz, Harun & Cam, Omer & Yilmaz, Ilker, 2017. "Effect of micro combustor geometry on combustion and emission behavior of premixed hydrogen/air flames," Energy, Elsevier, vol. 135(C), pages 585-597.
    2. Peng, Qingguo & Jiaqiang, E & Yang, W.M. & Xu, Hongpeng & Chen, Jingwei & Zhang, Feng & Meng, Tian & Qiu, Runzhi, 2019. "Experimental and numerical investigation of a micro-thermophotovoltaic system with different backward-facing steps and wall thicknesses," Energy, Elsevier, vol. 173(C), pages 540-547.
    3. Wan, Huaxian & Gao, Zihe & Ji, Jie & Zhang, Yongming & Li, Kaiyuan, 2018. "Experimental and theoretical study on flame front temperatures within ceiling jets from turbulent diffusion flames of n-heptane fuel," Energy, Elsevier, vol. 164(C), pages 79-86.
    4. Alhumairi, Mohammed KH Abbas & Almahdawi, Yasseen A. & Nawi, Sami A., 2021. "Flame behaviour and flame location in large-eddy simulation of the turbulent premixed combustion," Energy, Elsevier, vol. 232(C).
    5. Zhuang Kang & Zhiwei Shi & Jiahao Ye & Xinghua Tian & Zhixin Huang & Hao Wang & Depeng Wei & Qingguo Peng & Yaojie Tu, 2023. "A Review of Micro Power System and Micro Combustion: Present Situation, Techniques and Prospects," Energies, MDPI, vol. 16(7), pages 1-28, April.
    6. Wu, Gang & Jin, Xiao & Li, Qiangtian & Zhao, He & Ahmed, I.R. & Fu, Jianqin, 2016. "Experimental and numerical definition of the extreme heater locations in a closed-open standing wave thermoacoustic system," Applied Energy, Elsevier, vol. 182(C), pages 320-330.
    7. Kwak, Sanghyeok & Choi, Jaehong & Lee, Min Chul & Yoon, Youngbin, 2021. "Predicting instability frequency and amplitude using artificial neural network in a partially premixed combustor," Energy, Elsevier, vol. 230(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rashwan, Sherif S. & Ibrahim, Abdelmaged H. & Abou-Arab, Tharwat W. & Nemitallah, Medhat A. & Habib, Mohamed A., 2017. "Experimental study of atmospheric partially premixed oxy-combustion flames anchored over a perforated plate burner," Energy, Elsevier, vol. 122(C), pages 159-167.
    2. Rashwan, Sherif S. & Ibrahim, Abdelmaged H. & Abou-Arab, Tharwat W. & Nemitallah, Medhat A. & Habib, Mohamed A., 2016. "Experimental investigation of partially premixed methane–air and methane–oxygen flames stabilized over a perforated-plate burner," Applied Energy, Elsevier, vol. 169(C), pages 126-137.
    3. Oh, Jeongseog & Noh, Dongsoon & Ko, Changbok, 2013. "The effect of hydrogen addition on the flame behavior of a non-premixed oxy-methane jet in a lab-scale furnace," Energy, Elsevier, vol. 62(C), pages 362-369.
    4. Wang, Feifei & Li, Pengfei & Mei, Zhenfeng & Zhang, Jianpeng & Mi, Jianchun, 2014. "Combustion of CH4/O2/N2 in a well stirred reactor," Energy, Elsevier, vol. 72(C), pages 242-253.
    5. Li, Bo & Shi, Baolu & Chu, Qingzhao & Zhao, Xiaoyao & Li, Junwei & Wang, Ningfei, 2019. "Characteristics of stoichiometric CH4/O2/CO2 flame up to the pure oxygen condition," Energy, Elsevier, vol. 168(C), pages 151-159.
    6. Shen, Wenkai & Xing, Chang & Liu, Haiqing & Liu, Li & Hu, Qiming & Wu, Guohua & Yang, Yujia & Wu, Shaohua & Qiu, Penghua, 2022. "Exhaust gas recirculation effects on flame heat release rate distribution and dynamic characteristics in a micro gas turbine," Energy, Elsevier, vol. 249(C).
    7. Choi, Sun & Lee, Seungro & Kwon, Oh Chae, 2015. "Extinction limits and structure of counterflow nonpremixed hydrogen-doped ammonia/air flames at elevated temperatures," Energy, Elsevier, vol. 85(C), pages 503-510.
    8. González Álvarez, José Francisco & Gonzalo de Grado, Jesús, 2019. "Study of combustion in CO2-Capturing semi-closed Brayton cycle conditions," Energy, Elsevier, vol. 166(C), pages 1276-1290.
    9. He, Yizhuo & Zou, Chun & Song, Yu & Liu, Yang & Zheng, Chuguang, 2016. "Numerical study of characteristics on NO formation in methane MILD combustion with simultaneously hot and diluted oxidant and fuel (HDO/HDF)," Energy, Elsevier, vol. 112(C), pages 1024-1035.
    10. Chen, Wen-Lih & Currao, Gaetano & Li, Yueh-Heng & Kao, Chien-Chun, 2023. "Employing Taguchi method to optimize the performance of a microscale combined heat and power system with Stirling engine and thermophotovoltaic array," Energy, Elsevier, vol. 270(C).
    11. Yang, Xiao & He, Zhihong & Qiu, Penghua & Dong, Shikui & Tan, Heping, 2019. "Numerical investigations on combustion and emission characteristics of a novel elliptical jet-stabilized model combustor," Energy, Elsevier, vol. 170(C), pages 1082-1097.
    12. Ramadan, Islam A. & Ibrahim, Abdelmaged H. & Abou-Arab, Tharwat W. & Rashwan, Sherif S. & Nemitallah, Medhat A. & Habib, Mohamed A., 2016. "Effects of oxidizer flexibility and bluff-body blockage ratio on flammability limits of diffusion flames," Applied Energy, Elsevier, vol. 178(C), pages 19-28.
    13. Lin Lu & Haoyuan Jiang, 2024. "Study of NO and CO Formation Pathways in Jet Flames with CH 4 /H 2 Fuel Blends," Energies, MDPI, vol. 17(17), pages 1-19, September.
    14. Kang, Yinhu & Wei, Shuang & Zhang, Pengyuan & Lu, Xiaofeng & Wang, Quanhai & Gou, Xiaolong & Huang, Xiaomei & Peng, Shini & Yang, Dong & Ji, Xuanyu, 2017. "Detailed multi-dimensional study on NOx formation and destruction mechanisms in dimethyl ether/air diffusion flame under the moderate or intense low-oxygen dilution (MILD) condition," Energy, Elsevier, vol. 119(C), pages 1195-1211.
    15. Abdelhafez, Ahmed & Hussain, Muzafar & Nemitallah, Medhat A. & Habib, Mohamed A. & Ali, Asif, 2021. "Effects of jet diameter and spacing in a micromixer-like burner for clean oxy-fuel combustion in gas turbines," Energy, Elsevier, vol. 228(C).
    16. De Giorgi, Maria Grazia & Ficarella, Antonio & Sciolti, Aldebara & Pescini, Elisa & Campilongo, Stefano & Di Lecce, Giorgio, 2017. "Improvement of lean flame stability of inverse methane/air diffusion flame by using coaxial dielectric plasma discharge actuators," Energy, Elsevier, vol. 126(C), pages 689-706.
    17. Wang, Tiantian & Liu, Xuemin & Zhang, Yang & Zhang, Hai, 2024. "Thermodynamic and emission characteristics of a hydrogen-enriched natural gas-fired boiler integrated with external flue gas recirculation and waste heat recovery," Applied Energy, Elsevier, vol. 358(C).
    18. Hussain, Muzafar & Abdelhafez, Ahmed & Nemitallah, Medhat A. & Araoye, Abdulrazaq A. & Ben-Mansour, Rached & Habib, Mohamed A., 2020. "A highly diluted oxy-fuel micromixer combustor with hydrogen enrichment for enhancing turndown in gas turbines," Applied Energy, Elsevier, vol. 279(C).
    19. Zhao, Hao & Dana, Alon G. & Zhang, Zunhua & Green, William H. & Ju, Yiguang, 2018. "Experimental and modeling study of the mutual oxidation of N-pentane and nitrogen dioxide at low and high temperatures in a jet stirred reactor," Energy, Elsevier, vol. 165(PB), pages 727-738.
    20. Zhang, Yu & Wang, Shuman, 2024. "Numerical simulation of flue gas recirculation in a lime rotary kiln," Energy, Elsevier, vol. 297(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:95:y:2016:i:c:p:211-222. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.