IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v250y2019icp760-775.html
   My bibliography  Save this article

Life cycle assessment and energy payback time of a standalone hybrid renewable energy commercial microgrid: A case study of Town Island in Hong Kong

Author

Listed:
  • Wang, Richard
  • Lam, Chor-Man
  • Hsu, Shu-Chien
  • Chen, Jieh-Haur

Abstract

Microgrid solutions can incorporate clean renewable energy and operate autonomously to power remote areas unreachable by the main grid. While microgrids have thus attracted the interest of many electricity operators, some suggest that renewable energy is not as environmentally friendly as it is claimed to be. This study investigates the life cycle environmental impacts and energy payback time (EPBT) of a microgrid through a life cycle assessment (LCA) case study of the Town Island Microgrid, the first standalone hybrid renewable energy commercial microgrid in Hong Kong. The environmental performance of the Town Island Microgrid was further tested against 2 electrification options, including an on-site diesel generator system and a grid extension. Our results indicate that the Town Island Microgrid is the least impactful in 8 impact categories out of 12. For instance, the global warming potential (GWP) of the diesel generator system and the grid extension was 4.3 times and 7.8 times greater than that caused by the microgrid, respectively. The EPBT for the microgrid was 9.2 years, while the grid extension and the diesel generator EPBT values were 6.4 and 10.1 times longer than that of the microgrid, respectively. In conclusion, the case study provides substantial evidence that a microgrid solution can deliver a significantly superior life cycle environmental performance than other common electrification options.

Suggested Citation

  • Wang, Richard & Lam, Chor-Man & Hsu, Shu-Chien & Chen, Jieh-Haur, 2019. "Life cycle assessment and energy payback time of a standalone hybrid renewable energy commercial microgrid: A case study of Town Island in Hong Kong," Applied Energy, Elsevier, vol. 250(C), pages 760-775.
  • Handle: RePEc:eee:appene:v:250:y:2019:i:c:p:760-775
    DOI: 10.1016/j.apenergy.2019.04.183
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626191930844X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2019.04.183?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dawoud, Samir M. & Lin, Xiangning & Okba, Merfat I., 2018. "Hybrid renewable microgrid optimization techniques: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2039-2052.
    2. Smith, Cameron & Burrows, John & Scheier, Eric & Young, Amberli & Smith, Jessica & Young, Tiffany & Gheewala, Shabbir H., 2015. "Comparative Life Cycle Assessment of a Thai Island's diesel/PV/wind hybrid microgrid," Renewable Energy, Elsevier, vol. 80(C), pages 85-100.
    3. Gerbinet, Saïcha & Belboom, Sandra & Léonard, Angélique, 2014. "Life Cycle Analysis (LCA) of photovoltaic panels: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 747-753.
    4. Rodríguez-Gallegos, Carlos D. & Gandhi, Oktoviano & Bieri, Monika & Reindl, Thomas & Panda, S.K., 2018. "A diesel replacement strategy for off-grid systems based on progressive introduction of PV and batteries: An Indonesian case study," Applied Energy, Elsevier, vol. 229(C), pages 1218-1232.
    5. Nouni, M.R. & Mullick, S.C. & Kandpal, T.C., 2009. "Providing electricity access to remote areas in India: Niche areas for decentralized electricity supply," Renewable Energy, Elsevier, vol. 34(2), pages 430-434.
    6. López-González, A. & Domenech, B. & Ferrer-Martí, L., 2018. "Lifetime, cost and fuel efficiency in diesel projects for rural electrification in Venezuela," Energy Policy, Elsevier, vol. 121(C), pages 152-161.
    7. Oparaku, O.U., 2003. "Rural area power supply in Nigeria: A cost comparison of the photovoltaic, diesel/gasoline generator and grid utility options," Renewable Energy, Elsevier, vol. 28(13), pages 2089-2098.
    8. Amjad Ali & Wuhua Li & Rashid Hussain & Xiangning He & Barry W. Williams & Abdul Hameed Memon, 2017. "Overview of Current Microgrid Policies, Incentives and Barriers in the European Union, United States and China," Sustainability, MDPI, vol. 9(7), pages 1-28, June.
    9. Adefarati, T. & Bansal, R.C., 2019. "Reliability, economic and environmental analysis of a microgrid system in the presence of renewable energy resources," Applied Energy, Elsevier, vol. 236(C), pages 1089-1114.
    10. Greening, Benjamin & Azapagic, Adisa, 2013. "Environmental impacts of micro-wind turbines and their potential to contribute to UK climate change targets," Energy, Elsevier, vol. 59(C), pages 454-466.
    11. Akinyele, D.O., 2017. "Environmental performance evaluation of a grid-independent solar photovoltaic power generation (SPPG) plant," Energy, Elsevier, vol. 130(C), pages 515-529.
    12. Fürsch, Michaela & Hagspiel, Simeon & Jägemann, Cosima & Nagl, Stephan & Lindenberger, Dietmar & Tröster, Eckehard, 2013. "The role of grid extensions in a cost-efficient transformation of the European electricity system until 2050," Applied Energy, Elsevier, vol. 104(C), pages 642-652.
    13. Lamnatou, Chr. & Chemisana, D., 2017. "Concentrating solar systems: Life Cycle Assessment (LCA) and environmental issues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 916-932.
    14. Ustun, Taha Selim & Ozansoy, Cagil & Zayegh, Aladin, 2011. "Recent developments in microgrids and example cases around the world—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 4030-4041.
    15. Fabio Magrassi & Adriana Del Borghi & Michela Gallo & Carlo Strazza & Michela Robba, 2016. "Optimal Planning of Sustainable Buildings: Integration of Life Cycle Assessment and Optimization in a Decision Support System (DSS)," Energies, MDPI, vol. 9(7), pages 1-15, June.
    16. Moslehi, Salim & Reddy, T. Agami, 2019. "A new quantitative life cycle sustainability assessment framework: Application to integrated energy systems," Applied Energy, Elsevier, vol. 239(C), pages 482-493.
    17. Nosratabadi, Seyyed Mostafa & Hooshmand, Rahmat-Allah & Gholipour, Eskandar, 2017. "A comprehensive review on microgrid and virtual power plant concepts employed for distributed energy resources scheduling in power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 341-363.
    18. Wissner, Matthias, 2011. "The Smart Grid - A saucerful of secrets?," Applied Energy, Elsevier, vol. 88(7), pages 2509-2518, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yimy E. García-Vera & Rodolfo Dufo-López & José L. Bernal-Agustín, 2020. "Techno-Economic Feasibility Analysis through Optimization Strategies and Load Shifting in Isolated Hybrid Microgrids with Renewable Energy for the Non-Interconnected Zone (NIZ) of Colombia," Energies, MDPI, vol. 13(22), pages 1-20, November.
    2. Fernando Antonanzas-Torres & Javier Antonanzas & Julio Blanco-Fernandez, 2021. "State-of-the-Art of Mini Grids for Rural Electrification in West Africa," Energies, MDPI, vol. 14(4), pages 1-21, February.
    3. Kosmas A. Kavadias & Panagiotis Triantafyllou, 2021. "Hybrid Renewable Energy Systems’ Optimisation. A Review and Extended Comparison of the Most-Used Software Tools," Energies, MDPI, vol. 14(24), pages 1-28, December.
    4. Zhiming Lu & Youting Li, 2023. "A Multi-Criteria Framework for Sustainability Evaluation of Hydrogen-Based Multi-Microgrid Systems under Triangular Intuitionistic Fuzzy Environment," Sustainability, MDPI, vol. 15(4), pages 1-18, February.
    5. Kockel, Christina & Nolting, Lars & Goldbeck, Rafael & Wulf, Christina & De Doncker, Rik W. & Praktiknjo, Aaron, 2022. "A scalable life cycle assessment of alternating and direct current microgrids in office buildings," Applied Energy, Elsevier, vol. 305(C).
    6. Shah, Talha Hussain & Shabbir, Altamash & Waqas, Adeel & Janjua, Abdul Kashif & Shahzad, Nadia & Pervaiz, Hina & Shakir, Sehar, 2023. "Techno-economic appraisal of electric vehicle charging stations integrated with on-grid photovoltaics on existing fuel stations: A multicity study framework," Renewable Energy, Elsevier, vol. 209(C), pages 133-144.
    7. Bruno Domenech & Laia Ferrer-Martí & Facundo García & Georgina Hidalgo & Rafael Pastor & Antonin Ponsich, 2022. "Optimizing PV Microgrid Isolated Electrification Projects—A Case Study in Ecuador," Mathematics, MDPI, vol. 10(8), pages 1-24, April.
    8. Martinopoulos, Georgios, 2020. "Are rooftop photovoltaic systems a sustainable solution for Europe? A life cycle impact assessment and cost analysis," Applied Energy, Elsevier, vol. 257(C).
    9. Federico Rossi & Maria Laura Parisi & Sarah Greven & Riccardo Basosi & Adalgisa Sinicropi, 2020. "Life Cycle Assessment of Classic and Innovative Batteries for Solar Home Systems in Europe," Energies, MDPI, vol. 13(13), pages 1-27, July.
    10. Richard Wallsgrove & Jisuk Woo & Jae-Hyup Lee & Lorraine Akiba, 2021. "The Emerging Potential of Microgrids in the Transition to 100% Renewable Energy Systems," Energies, MDPI, vol. 14(6), pages 1-28, March.
    11. Miao, Huiying & Yu, Yadong & Kharrazi, Ali & Ma, Tieju, 2023. "Multi-criteria decision analysis for the planning of island microgrid system: A case study of Yongxing island, China," Energy, Elsevier, vol. 284(C).
    12. Papageorgiou, Asterios & Ashok, Archana & Hashemi Farzad, Tabassom & Sundberg, Cecilia, 2020. "Climate change impact of integrating a solar microgrid system into the Swedish electricity grid," Applied Energy, Elsevier, vol. 268(C).
    13. Emília Inês Come Zebra & Henny J. van der Windt & Jorge Olívio Penicela Nhambiu & Nicolò Golinucci & Marta Gandiglio & Isabella Bianco & André P. C. Faaij, 2024. "The Integration of Economic, Environmental, and Social Aspects by Developing and Demonstrating an Analytical Framework That Combines Methods and Indicators Using Mavumira Village as a Case Study," Sustainability, MDPI, vol. 16(22), pages 1-40, November.
    14. Kong, Minjin & Hong, Taehoon & Ji, Changyoon & Kang, Hyuna & Lee, Minhyun, 2020. "Development of building driven-energy payback time for energy transition of building with renewable energy systems," Applied Energy, Elsevier, vol. 271(C).
    15. Myriam Mansour & Hassan Harajli & Henri El Zakhem & Rima Manneh, 2024. "Cradle-to-grave life cycle assessment of a photovoltaic–diesel hybrid system: the case of an industrial facility," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(7), pages 17353-17381, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Younes Zahraoui & Ibrahim Alhamrouni & Saad Mekhilef & M. Reyasudin Basir Khan & Mehdi Seyedmahmoudian & Alex Stojcevski & Ben Horan, 2021. "Energy Management System in Microgrids: A Comprehensive Review," Sustainability, MDPI, vol. 13(19), pages 1-33, September.
    2. Yohannes Biru Aemro & Pedro Moura & Aníbal T. de Almeida, 2020. "Design and Modeling of a Standalone DC-Microgrid for Off-Grid Schools in Rural Areas of Developing Countries," Energies, MDPI, vol. 13(23), pages 1-24, December.
    3. Shi, Jiaqi & Ma, Liya & Li, Chenchen & Liu, Nian & Zhang, Jianhua, 2022. "A comprehensive review of standards for distributed energy resource grid-integration and microgrid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
    4. Emrani-Rahaghi, Pouria & Hashemi-Dezaki, Hamed & Ketabi, Abbas, 2023. "Efficient voltage control of low voltage distribution networks using integrated optimized energy management of networked residential multi-energy microgrids," Applied Energy, Elsevier, vol. 349(C).
    5. Thomas Sachs & Anna Gründler & Milos Rusic & Gilbert Fridgen, 2019. "Framing Microgrid Design from a Business and Information Systems Engineering Perspective," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 61(6), pages 729-744, December.
    6. Juanpera, M. & Ferrer-Martí, L. & Pastor, R., 2022. "Multi-stage optimization of rural electrification planning at regional level considering multiple criteria. Case study in Nigeria," Applied Energy, Elsevier, vol. 314(C).
    7. Aleksandra Ziemińska-Stolarska & Monika Pietrzak & Ireneusz Zbiciński, 2021. "Application of LCA to Determine Environmental Impact of Concentrated Photovoltaic Solar Panels—State-of-the-Art," Energies, MDPI, vol. 14(11), pages 1-20, May.
    8. Aberilla, Jhud Mikhail & Gallego-Schmid, Alejandro & Stamford, Laurence & Azapagic, Adisa, 2020. "Design and environmental sustainability assessment of small-scale off-grid energy systems for remote rural communities," Applied Energy, Elsevier, vol. 258(C).
    9. Vosughi, Amirkhosro & Tamimi, Ali & King, Alexandra Beatrice & Majumder, Subir & Srivastava, Anurag K., 2022. "Cyber–physical vulnerability and resiliency analysis for DER integration: A review, challenges and research needs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    10. Ramirez, A.D. & Boero, A. & Rivela, B. & Melendres, A.M. & Espinoza, S. & Salas, D.A., 2020. "Life cycle methods to analyze the environmental sustainability of electricity generation in Ecuador: Is decarbonization the right path?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    11. Quetzalcoatl Hernandez-Escobedo & Javier Garrido & Fernando Rueda-Martinez & Gerardo Alcalá & Alberto-Jesus Perea-Moreno, 2019. "Wind Power Cogeneration to Reduce Peak Electricity Demand in Mexican States Along the Gulf of Mexico," Energies, MDPI, vol. 12(12), pages 1-22, June.
    12. Vinny Motjoadi & Pitshou N. Bokoro & Moses O. Onibonoje, 2020. "A Review of Microgrid-Based Approach to Rural Electrification in South Africa: Architecture and Policy Framework," Energies, MDPI, vol. 13(9), pages 1-22, May.
    13. Sandelic, Monika & Peyghami, Saeed & Sangwongwanich, Ariya & Blaabjerg, Frede, 2022. "Reliability aspects in microgrid design and planning: Status and power electronics-induced challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    14. Richard Wallsgrove & Jisuk Woo & Jae-Hyup Lee & Lorraine Akiba, 2021. "The Emerging Potential of Microgrids in the Transition to 100% Renewable Energy Systems," Energies, MDPI, vol. 14(6), pages 1-28, March.
    15. Juanpera, M. & Blechinger, P. & Ferrer-Martí, L. & Hoffmann, M.M. & Pastor, R., 2020. "Multicriteria-based methodology for the design of rural electrification systems. A case study in Nigeria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    16. Fina, Bernadette & Auer, Hans & Friedl, Werner, 2019. "Profitability of PV sharing in energy communities: Use cases for different settlement patterns," Energy, Elsevier, vol. 189(C).
    17. Bhuiyan, Erphan A. & Hossain, Md. Zahid & Muyeen, S.M. & Fahim, Shahriar Rahman & Sarker, Subrata K. & Das, Sajal K., 2021. "Towards next generation virtual power plant: Technology review and frameworks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    18. Pablo Benalcazar & Adam Suski & Jacek Kamiński, 2020. "The Effects of Capital and Energy Subsidies on the Optimal Design of Microgrid Systems," Energies, MDPI, vol. 13(4), pages 1-23, February.
    19. Mishra, Manohar & Patnaik, Bhaskar & Biswal, Monalisa & Hasan, Shazia & Bansal, Ramesh C., 2022. "A systematic review on DC-microgrid protection and grounding techniques: Issues, challenges and future perspective," Applied Energy, Elsevier, vol. 313(C).
    20. Mandelli, Stefano & Barbieri, Jacopo & Mereu, Riccardo & Colombo, Emanuela, 2016. "Off-grid systems for rural electrification in developing countries: Definitions, classification and a comprehensive literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1621-1646.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:250:y:2019:i:c:p:760-775. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.