IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v91y2015icp160-167.html
   My bibliography  Save this article

Steam/oxygen gasification of dried sewage sludge in a two-stage gasifier: Effects of the steam to fuel ratio and ash of the activated carbon on the production of hydrogen and tar removal

Author

Listed:
  • Choi, Young-Kon
  • Cho, Min-Hwan
  • Kim, Joo-Sik

Abstract

Steam/oxygen gasification of dried sewage sludge was performed in a two-stage gasifier to produce an H2-rich and tar-free syngas. The experiment mainly investigated the effects of activated carbon, ash of activated carbon, steam to fuel ratio and the combination of additives on syngas quality. In the results, all the syngases obtained with activated carbon did not contain any tar. Activated carbon increased the H2 production and decreased the NH3 content in syngas. Acid-treated activated carbon, which has less ash content than the original activated carbon, was less active in tar cracking and H2 production. The steam to fuel ratio had a strong influence on syngas quality, causing a significant rise in the H2 and NH3 contents in syngas at a high steam to fuel ratio. The extra addition of CaO and activated carbon to the base additive (activated carbon) led to increased H2 production and active tar cracking. The maximum H2 content in syngas (52.2 vol%) was obtained with 2.5 kg of activated carbon at a steam to fuel ratio of 0.52. The minimum NH3 content in syngas was 20 ppm.

Suggested Citation

  • Choi, Young-Kon & Cho, Min-Hwan & Kim, Joo-Sik, 2015. "Steam/oxygen gasification of dried sewage sludge in a two-stage gasifier: Effects of the steam to fuel ratio and ash of the activated carbon on the production of hydrogen and tar removal," Energy, Elsevier, vol. 91(C), pages 160-167.
  • Handle: RePEc:eee:energy:v:91:y:2015:i:c:p:160-167
    DOI: 10.1016/j.energy.2015.08.027
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544215011019
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2015.08.027?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Udomsirichakorn, Jakkapong & Salam, P. Abdul, 2014. "Review of hydrogen-enriched gas production from steam gasification of biomass: The prospect of CaO-based chemical looping gasification," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 565-579.
    2. Cho, Min-Hwan & Mun, Tae-Young & Choi, Young-Kon & Kim, Joo-Sik, 2014. "Two-stage air gasification of mixed plastic waste: Olivine as the bed material and effects of various additives and a nickel-plated distributor on the tar removal," Energy, Elsevier, vol. 70(C), pages 128-134.
    3. Parthasarathy, Prakash & Narayanan, K. Sheeba, 2014. "Hydrogen production from steam gasification of biomass: Influence of process parameters on hydrogen yield – A review," Renewable Energy, Elsevier, vol. 66(C), pages 570-579.
    4. Cho, Min-Hwan & Mun, Tae-Young & Kim, Joo-Sik, 2013. "Air gasification of mixed plastic wastes using calcined dolomite and activated carbon in a two-stage gasifier to reduce tar," Energy, Elsevier, vol. 53(C), pages 299-305.
    5. Cho, Min-Hwan & Mun, Tae-Young & Kim, Joo-Sik, 2013. "Production of low-tar producer gas from air gasification of mixed plastic waste in a two-stage gasifier using olivine combined with activated carbon," Energy, Elsevier, vol. 58(C), pages 688-694.
    6. Asadullah, Mohammad, 2014. "Biomass gasification gas cleaning for downstream applications: A comparative critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 118-132.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Syed-Hassan, Syed Shatir A. & Wang, Yi & Hu, Song & Su, Sheng & Xiang, Jun, 2017. "Thermochemical processing of sewage sludge to energy and fuel: Fundamentals, challenges and considerations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 888-913.
    2. Buentello-Montoya, D.A. & Zhang, X. & Li, J., 2019. "The use of gasification solid products as catalysts for tar reforming," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 399-412.
    3. Recalde, Mayra & Woudstra, Theo & Aravind, P.V., 2018. "Renewed sanitation technology: A highly efficient faecal-sludge gasification–solid oxide fuel cell power plant," Applied Energy, Elsevier, vol. 222(C), pages 515-529.
    4. Yang, Xiaoxia & Tian, Sicong & Kan, Tao & Zhu, Yuxiang & Xu, Honghui & Strezov, Vladimir & Nelson, Peter & Jiang, Yijiao, 2019. "Sorption-enhanced thermochemical conversion of sewage sludge to syngas with intensified carbon utilization," Applied Energy, Elsevier, vol. 254(C).
    5. Al-Rahbi, Amal S. & Williams, Paul T., 2017. "Hydrogen-rich syngas production and tar removal from biomass gasification using sacrificial tyre pyrolysis char," Applied Energy, Elsevier, vol. 190(C), pages 501-509.
    6. Kim, Jae-Kyung & Jeong, Yong-Seong & Kim, Jong-Woo & Kim, Joo-Sik, 2023. "Two-stage thermochemical conversion of polyethylene terephthalate using steam to produce a clean and H2- and CO-rich syngas," Energy, Elsevier, vol. 276(C).
    7. Choi, Young-Kon & Ko, Ji-Ho & Kim, Joo-Sik, 2017. "A new type three-stage gasification of dried sewage sludge: Effects of equivalence ratio, weight ratio of activated carbon to feed, and feed rate on gas composition and tar, NH3, and H2S removal and r," Energy, Elsevier, vol. 118(C), pages 139-146.
    8. Lin, Chiou-Liang & Chou, Jing-Dong & Iu, Chi-Hou, 2020. "Effects of second-stage bed materials on hydrogen production in the syngas of a two-stage gasification process," Renewable Energy, Elsevier, vol. 154(C), pages 903-912.
    9. Choi, Min-Jun & Jeong, Yong-Seong & Kim, Joo-Sik, 2021. "Air gasification of polyethylene terephthalate using a two-stage gasifier with active carbon for the production of H2 and CO," Energy, Elsevier, vol. 223(C).
    10. Choi, Young-Kon & Mun, Tae-Young & Cho, Min-Hwan & Kim, Joo-Sik, 2016. "Gasification of dried sewage sludge in a newly developed three-stage gasifier: Effect of each reactor temperature on the producer gas composition and impurity removal," Energy, Elsevier, vol. 114(C), pages 121-128.
    11. Ma, Jing & Chen, Mengjun & Yang, Tianxue & Liu, Zhengang & Jiao, Wentao & Li, Dong & Gai, Chao, 2019. "Gasification performance of the hydrochar derived from co-hydrothermal carbonization of sewage sludge and sawdust," Energy, Elsevier, vol. 173(C), pages 732-739.
    12. Derick Lima & Li Li & Gregory Appleby, 2024. "A Review of Renewable Energy Technologies in Municipal Wastewater Treatment Plants (WWTPs)," Energies, MDPI, vol. 17(23), pages 1-52, December.
    13. Upadhyay, Darshit S. & Panchal, Krunal R. & Sakhiya, Anil Kumar V & Patel, Rajesh N., 2020. "Air-Steam gasification of lignite in a fixed bed gasifier: Influence of steam to lignite ratio on performance of downdraft gasifier," Energy, Elsevier, vol. 211(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cho, Min-Hwan & Choi, Young-Kon & Kim, Joo-Sik, 2015. "Air gasification of PVC (polyvinyl chloride)-containing plastic waste in a two-stage gasifier using Ca-based additives and Ni-loaded activated carbon for the production of clean and hydrogen-rich prod," Energy, Elsevier, vol. 87(C), pages 586-593.
    2. Ichiro Tsuchimoto & Yuya Kajikawa, 2022. "Recycling of Plastic Waste: A Systematic Review Using Bibliometric Analysis," Sustainability, MDPI, vol. 14(24), pages 1-39, December.
    3. Li, Bin & Magoua Mbeugang, Christian Fabrice & Huang, Yong & Liu, Dongjing & Wang, Qian & Zhang, Shu, 2022. "A review of CaO based catalysts for tar removal during biomass gasification," Energy, Elsevier, vol. 244(PB).
    4. Shahbaz, Muhammad & Al-Ansari, Tareq & Inayat, Muddasser & Sulaiman, Shaharin A. & Parthasarathy, Prakash & McKay, Gordon, 2020. "A critical review on the influence of process parameters in catalytic co-gasification: Current performance and challenges for a future prospectus," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    5. Chen, Zhijie & Wei, Wei & Chen, Xueming & Liu, Yiwen & Shen, Yansong & Ni, Bing-Jie, 2024. "Upcycling of plastic wastes for hydrogen production: Advances and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 195(C).
    6. Antonio Molino & Vincenzo Larocca & Simeone Chianese & Dino Musmarra, 2018. "Biofuels Production by Biomass Gasification: A Review," Energies, MDPI, vol. 11(4), pages 1-31, March.
    7. Arena, Umberto & Di Gregorio, Fabrizio, 2014. "Energy generation by air gasification of two industrial plastic wastes in a pilot scale fluidized bed reactor," Energy, Elsevier, vol. 68(C), pages 735-743.
    8. Huang, Jijiang & Veksha, Andrei & Chan, Wei Ping & Giannis, Apostolos & Lisak, Grzegorz, 2022. "Chemical recycling of plastic waste for sustainable material management: A prospective review on catalysts and processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    9. Ramos, Ana & Monteiro, Eliseu & Rouboa, Abel, 2019. "Numerical approaches and comprehensive models for gasification process: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 188-206.
    10. Bassey, Uduak & Sarquah, Khadija & Hartmann, Michael & Tom, Abasi-ofon & Beck, Gesa & Antwi, Edward & Narra, Satyanarayana & Nelles, Michael, 2023. "Thermal treatment options for single-use, multilayered and composite waste plastics in Africa," Energy, Elsevier, vol. 270(C).
    11. Cho, Min-Hwan & Mun, Tae-Young & Choi, Young-Kon & Kim, Joo-Sik, 2014. "Two-stage air gasification of mixed plastic waste: Olivine as the bed material and effects of various additives and a nickel-plated distributor on the tar removal," Energy, Elsevier, vol. 70(C), pages 128-134.
    12. Guan, Guoqing & Kaewpanha, Malinee & Hao, Xiaogang & Abudula, Abuliti, 2016. "Catalytic steam reforming of biomass tar: Prospects and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 450-461.
    13. Nguyen, Nhut M. & Alobaid, Falah & May, Jan & Peters, Jens & Epple, Bernd, 2020. "Experimental study on steam gasification of torrefied woodchips in a bubbling fluidized bed reactor," Energy, Elsevier, vol. 202(C).
    14. Ghulamullah Maitlo & Imran Ali & Kashif Hussain Mangi & Safdar Ali & Hubdar Ali Maitlo & Imran Nazir Unar & Abdul Majeed Pirzada, 2022. "Thermochemical Conversion of Biomass for Syngas Production: Current Status and Future Trends," Sustainability, MDPI, vol. 14(5), pages 1-30, February.
    15. Choi, Min-Jun & Jeong, Yong-Seong & Kim, Joo-Sik, 2021. "Air gasification of polyethylene terephthalate using a two-stage gasifier with active carbon for the production of H2 and CO," Energy, Elsevier, vol. 223(C).
    16. Han, Si Woo & Lee, Jeong Jae & Tokmurzin, Diyar & Lee, Seok Hyeong & Nam, Ji Young & Park, Sung Jin & Ra, Ho Won & Mun, Tae-Young & Yoon, Sang Jun & Yoon, Sung Min & Moon, Ji Hong & Lee, Jae Goo & Kim, 2022. "Gasification characteristics of waste plastics (SRF) in a bubbling fluidized bed: Effects of temperature and equivalence ratio," Energy, Elsevier, vol. 238(PC).
    17. Jeong, Yong-Seong & Choi, Young-Kon & Kim, Joo-Sik, 2019. "Three-stage air gasification of waste polyethylene: In-situ regeneration of active carbon used as a tar removal additive," Energy, Elsevier, vol. 166(C), pages 335-342.
    18. Lui, Jade & Chen, Wei-Hsin & Tsang, Daniel C.W. & You, Siming, 2020. "A critical review on the principles, applications, and challenges of waste-to-hydrogen technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    19. Ramos, Ana & Monteiro, Eliseu & Silva, Valter & Rouboa, Abel, 2018. "Co-gasification and recent developments on waste-to-energy conversion: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 380-398.
    20. Nguyen, Nhut M. & Alobaid, Falah & Epple, Bernd, 2021. "Chemical looping gasification of torrefied woodchips in a bubbling fluidized bed test rig using iron-based oxygen carriers," Renewable Energy, Elsevier, vol. 172(C), pages 34-45.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:91:y:2015:i:c:p:160-167. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.