IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v90y2015ip2p1239-1250.html
   My bibliography  Save this article

Modeling and simulation of thermoelectric device working as a heat pump and an electric generator under Mediterranean climate

Author

Listed:
  • Al-Nimr, Moh'd A.
  • Tashtoush, Bourhan M.
  • Jaradat, Ahmad A.

Abstract

This paper presents a study of a small thermoelectric device used primarily as a heat pump and secondarily as an electricity generator when space heating and cooling are not required and incident solar radiation is sufficient. As a power generator, the thermoelectric device is integrated with an evacuated solar collector to utilize solar power. Performance of the thermoelectric device as a heat pump and as an electric generator is simulated using MATLAB/SIMULINK. The purpose of this study is to estimate the energy savings from using the thermoelectric device in its electricity generation mode. The potential of energy saving because of this electricity generation mode function, has been examined in three different cases. These cases represent the operation of the dual mode thermoelectric system in typical home, school and office buildings in the Mediterranean region. In addition, the effects of different parameters, such as the solar radiation and ambient conditions, on the device performance were investigated for both modes as well as parameters related to the device itself. Furthermore, hours of operation were estimated and the economic feasibility of the device was evaluated. Results of this study include performance curves of the thermoelectric device in both modes as well as the estimation of the payback period for Mediterranean regions.

Suggested Citation

  • Al-Nimr, Moh'd A. & Tashtoush, Bourhan M. & Jaradat, Ahmad A., 2015. "Modeling and simulation of thermoelectric device working as a heat pump and an electric generator under Mediterranean climate," Energy, Elsevier, vol. 90(P2), pages 1239-1250.
  • Handle: RePEc:eee:energy:v:90:y:2015:i:p2:p:1239-1250
    DOI: 10.1016/j.energy.2015.06.090
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544215008464
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2015.06.090?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tayebi, Lobat & Zamanipour, Zahra & Vashaee, Daryoosh, 2014. "Design optimization of micro-fabricated thermoelectric devices for solar power generation," Renewable Energy, Elsevier, vol. 69(C), pages 166-173.
    2. He, Wei & Zhou, Jinzhi & Hou, Jingxin & Chen, Chi & Ji, Jie, 2013. "Theoretical and experimental investigation on a thermoelectric cooling and heating system driven by solar," Applied Energy, Elsevier, vol. 107(C), pages 89-97.
    3. Kinsella, C.E. & O’Shaughnessy, S.M. & Deasy, M.J. & Duffy, M. & Robinson, A.J., 2014. "Battery charging considerations in small scale electricity generation from a thermoelectric module," Applied Energy, Elsevier, vol. 114(C), pages 80-90.
    4. Miranda, Á.G. & Chen, T.S. & Hong, C.W., 2013. "Feasibility study of a green energy powered thermoelectric chip based air conditioner for electric vehicles," Energy, Elsevier, vol. 59(C), pages 633-641.
    5. Montecucco, Andrea & Knox, Andrew R., 2014. "Accurate simulation of thermoelectric power generating systems," Applied Energy, Elsevier, vol. 118(C), pages 166-172.
    6. Zhang, Ming & Miao, Lei & Kang, Yi Pu & Tanemura, Sakae & Fisher, Craig A.J. & Xu, Gang & Li, Chun Xin & Fan, Guang Zhu, 2013. "Efficient, low-cost solar thermoelectric cogenerators comprising evacuated tubular solar collectors and thermoelectric modules," Applied Energy, Elsevier, vol. 109(C), pages 51-59.
    7. He, Wei & Su, Yuehong & Wang, Y.Q. & Riffat, S.B. & Ji, Jie, 2012. "A study on incorporation of thermoelectric modules with evacuated-tube heat-pipe solar collectors," Renewable Energy, Elsevier, vol. 37(1), pages 142-149.
    8. Attia, Peter M. & Lewis, Matthew R. & Bomberger, Cory C. & Prasad, Ajay K. & Zide, Joshua M.O., 2013. "Experimental studies of thermoelectric power generation in dynamic temperature environments," Energy, Elsevier, vol. 60(C), pages 453-456.
    9. Martínez, A. & Astrain, D. & Rodríguez, A., 2011. "Experimental and analytical study on thermoelectric self cooling of devices," Energy, Elsevier, vol. 36(8), pages 5250-5260.
    10. Zhao, Dongliang & Tan, Gang, 2014. "Experimental evaluation of a prototype thermoelectric system integrated with PCM (phase change material) for space cooling," Energy, Elsevier, vol. 68(C), pages 658-666.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lee, Heonjoong & Sharp, Jeff & Stokes, David & Pearson, Matthew & Priya, Shashank, 2018. "Modeling and analysis of the effect of thermal losses on thermoelectric generator performance using effective properties," Applied Energy, Elsevier, vol. 211(C), pages 987-996.
    2. Kwan, Trevor Hocksun & Wu, Xiaofeng & Yao, Qinghe, 2018. "Bidirectional operation of the thermoelectric device for active temperature control of fuel cells," Applied Energy, Elsevier, vol. 222(C), pages 410-422.
    3. Ju, Chengjian & Dui, Guansuo & Zheng, Helen Hao & Xin, Libiao, 2017. "Revisiting the temperature dependence in material properties and performance of thermoelectric materials," Energy, Elsevier, vol. 124(C), pages 249-257.
    4. Al-Nimr, Moh’d A. & Tashtoush, Bourhan M. & Khasawneh, Mohammad A. & Al-Keyyam, Ibrahim, 2017. "A hybrid concentrated solar thermal collector/thermo-electric generation system," Energy, Elsevier, vol. 134(C), pages 1001-1012.
    5. Mamur, Hayati & Bhuiyan, M.R.A. & Korkmaz, Fatih & Nil, Mustafa, 2018. "A review on bismuth telluride (Bi2Te3) nanostructure for thermoelectric applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 4159-4169.
    6. Zuazua-Ros, Amaia & Martín-Gómez, César & Ibañez-Puy, Elia & Vidaurre-Arbizu, Marina & Gelbstein, Yaniv, 2019. "Investigation of the thermoelectric potential for heating, cooling and ventilation in buildings: Characterization options and applications," Renewable Energy, Elsevier, vol. 131(C), pages 229-239.
    7. Al-Nimr, M.A. & Al-Darawsheh, I.A. & AL-Khalayleh, L.A., 2018. "A novel hybrid cavity solar thermal collector," Renewable Energy, Elsevier, vol. 115(C), pages 299-307.
    8. Feng, Changling & E, Jiaqiang & Han, Wei & Deng, Yuanwang & Zhang, Bin & Zhao, Xiaohuan & Han, Dandan, 2021. "Key technology and application analysis of zeolite adsorption for energy storage and heat-mass transfer process: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    9. Kwan, Trevor Hocksun & Wu, Xiaofeng & Yao, Qinghe, 2018. "Integrated TEG-TEC and variable coolant flow rate controller for temperature control and energy harvesting," Energy, Elsevier, vol. 159(C), pages 448-456.
    10. Kanimba, Eurydice & Pearson, Matthew & Sharp, Jeff & Stokes, David & Priya, Shashank & Tian, Zhiting, 2018. "A comprehensive model of a lead telluride thermoelectric generator," Energy, Elsevier, vol. 142(C), pages 813-821.
    11. Tong, Yueheng & Yang, Wei, 2022. "Numerical analysis and experimental study on the thermoelectric characteristics of the Al–Si alloy used for building energy storage tile," Renewable Energy, Elsevier, vol. 200(C), pages 1447-1457.
    12. Tian, Xiao-Xiao & Asaadi, Soheil & Moria, Hazim & Kaood, Amr & Pourhedayat, Samira & Jermsittiparsert, Kittisak, 2020. "Proposing tube-bundle arrangement of tubular thermoelectric module as a novel air cooler," Energy, Elsevier, vol. 208(C).
    13. Hansol Lim & Seong-Yong Cheon & Jae-Weon Jeong, 2018. "Empirical Analysis for the Heat Exchange Effectiveness of a Thermoelectric Liquid Cooling and Heating Unit," Energies, MDPI, vol. 11(3), pages 1-14, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Di & Zhao, Fu-Yun & Yang, Hongxing & Tang, Guang-Fa, 2015. "Theoretical and experimental investigations of thermoelectric heating system with multiple ventilation channels," Applied Energy, Elsevier, vol. 159(C), pages 458-468.
    2. Sadighi Dizaji, Hamed & Jafarmadar, Samad & Khalilarya, Shahram & Moosavi, Amin, 2016. "An exhaustive experimental study of a novel air-water based thermoelectric cooling unit," Applied Energy, Elsevier, vol. 181(C), pages 357-366.
    3. Ding, L.C. & Akbarzadeh, A. & Tan, L., 2018. "A review of power generation with thermoelectric system and its alternative with solar ponds," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 799-812.
    4. Twaha, Ssennoga & Zhu, Jie & Yan, Yuying & Li, Bo, 2016. "A comprehensive review of thermoelectric technology: Materials, applications, modelling and performance improvement," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 698-726.
    5. Liu, Di & Zhao, Fu-Yun & Yang, Hong-Xing & Tang, Guang-Fa, 2015. "Thermoelectric mini cooler coupled with micro thermosiphon for CPU cooling system," Energy, Elsevier, vol. 83(C), pages 29-36.
    6. He, Wei & Zhang, Gan & Zhang, Xingxing & Ji, Jie & Li, Guiqiang & Zhao, Xudong, 2015. "Recent development and application of thermoelectric generator and cooler," Applied Energy, Elsevier, vol. 143(C), pages 1-25.
    7. Al-Nimr, Moh’d A. & Tashtoush, Bourhan M. & Khasawneh, Mohammad A. & Al-Keyyam, Ibrahim, 2017. "A hybrid concentrated solar thermal collector/thermo-electric generation system," Energy, Elsevier, vol. 134(C), pages 1001-1012.
    8. Compadre Torrecilla, Marcos & Montecucco, Andrea & Siviter, Jonathan & Knox, Andrew R. & Strain, Andrew, 2019. "Novel model and maximum power tracking algorithm for thermoelectric generators operated under constant heat flux," Applied Energy, Elsevier, vol. 256(C).
    9. Zhu, Wei & Deng, Yuan & Gao, Min & Wang, Yao & Cui, Jiaolin & Gao, Hongli, 2015. "Thin-film solar thermoelectric generator with enhanced power output: Integrated optimization design to obtain directional heat flow," Energy, Elsevier, vol. 89(C), pages 106-117.
    10. Olle Högblom & Ronnie Andersson, 2020. "Multiphysics CFD Simulation for Design and Analysis of Thermoelectric Power Generation," Energies, MDPI, vol. 13(17), pages 1-15, August.
    11. Kim, Hoon & Kim, Woochul, 2015. "A way of achieving a low $/W and a decent power output from a thermoelectric device," Applied Energy, Elsevier, vol. 139(C), pages 205-211.
    12. Montecucco, A. & Siviter, J. & Knox, A.R., 2017. "Combined heat and power system for stoves with thermoelectric generators," Applied Energy, Elsevier, vol. 185(P2), pages 1336-1342.
    13. Cheng-Xian Lin & Robel Kiflemariam, 2019. "Numerical Simulation and Validation of Thermoeletric Generator Based Self-Cooling System with Airflow," Energies, MDPI, vol. 12(21), pages 1-21, October.
    14. Sajid, Muhammad & Hassan, Ibrahim & Rahman, Aziz, 2017. "An overview of cooling of thermoelectric devices," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 15-22.
    15. Ming, T. & Wu, Y. & Peng, C. & Tao, Y., 2015. "Thermal analysis on a segmented thermoelectric generator," Energy, Elsevier, vol. 80(C), pages 388-399.
    16. Liu, Yi-Hua & Chiu, Yi-Hsun & Huang, Jia-Wei & Wang, Shun-Chung, 2016. "A novel maximum power point tracker for thermoelectric generation system," Renewable Energy, Elsevier, vol. 97(C), pages 306-318.
    17. Irshad, Kashif & Habib, Khairul & Basrawi, Firdaus & Saha, Bidyut Baran, 2017. "Study of a thermoelectric air duct system assisted by photovoltaic wall for space cooling in tropical climate," Energy, Elsevier, vol. 119(C), pages 504-522.
    18. Maryam Al Owidh & Basma Souayeh & Imran Qasim Memon & Kashif Ali Abro & Huda Alfannakh, 2022. "Heat Transfer and Fluid Circulation of Thermoelectric Fluid through the Fractional Approach Based on Local Kernel," Energies, MDPI, vol. 15(22), pages 1-12, November.
    19. Högblom, Olle & Andersson, Ronnie, 2016. "A simulation framework for prediction of thermoelectric generator system performance," Applied Energy, Elsevier, vol. 180(C), pages 472-482.
    20. Zuazua-Ros, Amaia & Martín-Gómez, César & Ibañez-Puy, Elia & Vidaurre-Arbizu, Marina & Gelbstein, Yaniv, 2019. "Investigation of the thermoelectric potential for heating, cooling and ventilation in buildings: Characterization options and applications," Renewable Energy, Elsevier, vol. 131(C), pages 229-239.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:90:y:2015:i:p2:p:1239-1250. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.