IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v60y2013icp453-456.html
   My bibliography  Save this article

Experimental studies of thermoelectric power generation in dynamic temperature environments

Author

Listed:
  • Attia, Peter M.
  • Lewis, Matthew R.
  • Bomberger, Cory C.
  • Prasad, Ajay K.
  • Zide, Joshua M.O.

Abstract

We show that thermoelectrics can generate power from environments experiencing temporal temperature fluctuations; this source of power is useful for low-power devices in remote locations. We design and characterize devices that employ a thermoelectric module sandwiched between two heat exchangers with significantly different thermal masses and examine the effects of heat exchanger size and material selection, period of oscillation of the environmental temperature fluctuations, and radiative heat transfer on the thermoelectric power output. We report maximum experimental power generation on the order of milliwatts using standard bismuth telluride thermoelectric modules in devices with a size of about 10 cm3.

Suggested Citation

  • Attia, Peter M. & Lewis, Matthew R. & Bomberger, Cory C. & Prasad, Ajay K. & Zide, Joshua M.O., 2013. "Experimental studies of thermoelectric power generation in dynamic temperature environments," Energy, Elsevier, vol. 60(C), pages 453-456.
  • Handle: RePEc:eee:energy:v:60:y:2013:i:c:p:453-456
    DOI: 10.1016/j.energy.2013.08.046
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544213007354
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2013.08.046?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Lingen & Li, Jun & Sun, Fengrui & Wu, Chih, 2005. "Performance optimization of a two-stage semiconductor thermoelectric-generator," Applied Energy, Elsevier, vol. 82(4), pages 300-312, December.
    2. Meng, Fankai & Chen, Lingen & Sun, Fengrui, 2011. "A numerical model and comparative investigation of a thermoelectric generator with multi-irreversibilities," Energy, Elsevier, vol. 36(5), pages 3513-3522.
    3. Kanishka Biswas & Jiaqing He & Ivan D. Blum & Chun-I Wu & Timothy P. Hogan & David N. Seidman & Vinayak P. Dravid & Mercouri G. Kanatzidis, 2012. "High-performance bulk thermoelectrics with all-scale hierarchical architectures," Nature, Nature, vol. 489(7416), pages 414-418, September.
    4. Hsu, Cheng-Ting & Huang, Gia-Yeh & Chu, Hsu-Shen & Yu, Ben & Yao, Da-Jeng, 2011. "Experiments and simulations on low-temperature waste heat harvesting system by thermoelectric power generators," Applied Energy, Elsevier, vol. 88(4), pages 1291-1297, April.
    5. Allon I. Hochbaum & Renkun Chen & Raul Diaz Delgado & Wenjie Liang & Erik C. Garnett & Mark Najarian & Arun Majumdar & Peidong Yang, 2008. "Enhanced thermoelectric performance of rough silicon nanowires," Nature, Nature, vol. 451(7175), pages 163-167, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Al-Nimr, Moh'd A. & Tashtoush, Bourhan M. & Jaradat, Ahmad A., 2015. "Modeling and simulation of thermoelectric device working as a heat pump and an electric generator under Mediterranean climate," Energy, Elsevier, vol. 90(P2), pages 1239-1250.
    2. Falcão Carneiro, J. & Gomes de Almeida, F., 2016. "Model of a thermal driven volumetric pump for energy harvesting in an underwater glider," Energy, Elsevier, vol. 112(C), pages 28-42.
    3. Cottrill, Anton L. & Zhang, Ge & Liu, Albert Tianxiang & Bakytbekov, Azamat & Silmore, Kevin S. & Koman, Volodymyr B. & Shamim, Atif & Strano, Michael S., 2019. "Persistent energy harvesting in the harsh desert environment using a thermal resonance device: Design, testing, and analysis," Applied Energy, Elsevier, vol. 235(C), pages 1514-1523.
    4. Li, Saiwei & Sun, Zhiqiang, 2015. "Harvesting vortex energy in the cylinder wake with a pivoting vane," Energy, Elsevier, vol. 88(C), pages 783-792.
    5. Ando Junior, O.H. & Maran, A.L.O. & Henao, N.C., 2018. "A review of the development and applications of thermoelectric microgenerators for energy harvesting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 376-393.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gou, Xiaolong & Yang, Suwen & Xiao, Heng & Ou, Qiang, 2013. "A dynamic model for thermoelectric generator applied in waste heat recovery," Energy, Elsevier, vol. 52(C), pages 201-209.
    2. Liang, Gaowei & Zhou, Jiemin & Huang, Xuezhang, 2011. "Analytical model of parallel thermoelectric generator," Applied Energy, Elsevier, vol. 88(12), pages 5193-5199.
    3. Hamid Elsheikh, Mohamed & Shnawah, Dhafer Abdulameer & Sabri, Mohd Faizul Mohd & Said, Suhana Binti Mohd & Haji Hassan, Masjuki & Ali Bashir, Mohamed Bashir & Mohamad, Mahazani, 2014. "A review on thermoelectric renewable energy: Principle parameters that affect their performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 337-355.
    4. Wang, Yuchao & Dai, Chuanshan & Wang, Shixue, 2013. "Theoretical analysis of a thermoelectric generator using exhaust gas of vehicles as heat source," Applied Energy, Elsevier, vol. 112(C), pages 1171-1180.
    5. Liu, Zhichun & Zhu, Shiping & Ge, Ya & Shan, Feng & Zeng, Lingping & Liu, Wei, 2017. "Geometry optimization of two-stage thermoelectric generators using simplified conjugate-gradient method," Applied Energy, Elsevier, vol. 190(C), pages 540-552.
    6. Kunlin Cheng & Yu Feng & Chuanwen Lv & Silong Zhang & Jiang Qin & Wen Bao, 2017. "Performance Evaluation of Waste Heat Recovery Systems Based on Semiconductor Thermoelectric Generators for Hypersonic Vehicles," Energies, MDPI, vol. 10(4), pages 1-16, April.
    7. Lee, HoSung, 2013. "Optimal design of thermoelectric devices with dimensional analysis," Applied Energy, Elsevier, vol. 106(C), pages 79-88.
    8. Zou, Wen-Jiang & Shen, Kun-Yang & Jung, Seunghun & Kim, Young-Bae, 2021. "Application of thermoelectric devices in performance optimization of a domestic PEMFC-based CHP system," Energy, Elsevier, vol. 229(C).
    9. Jinlong Chen & Kewen Li & Changwei Liu & Mao Li & Youchang Lv & Lin Jia & Shanshan Jiang, 2017. "Enhanced Efficiency of Thermoelectric Generator by Optimizing Mechanical and Electrical Structures," Energies, MDPI, vol. 10(9), pages 1-15, September.
    10. He, Zhi-Zhu, 2020. "A coupled electrical-thermal impedance matching model for design optimization of thermoelectric generator," Applied Energy, Elsevier, vol. 269(C).
    11. Massaguer, A. & Massaguer, E. & Comamala, M. & Pujol, T. & González, J.R. & Cardenas, M.D. & Carbonell, D. & Bueno, A.J., 2018. "A method to assess the fuel economy of automotive thermoelectric generators," Applied Energy, Elsevier, vol. 222(C), pages 42-58.
    12. Huang, Yu-Xian & Wang, Xiao-Dong & Cheng, Chin-Hsiang & Lin, David Ta-Wei, 2013. "Geometry optimization of thermoelectric coolers using simplified conjugate-gradient method," Energy, Elsevier, vol. 59(C), pages 689-697.
    13. Tian, Hua & Sun, Xiuxiu & Jia, Qi & Liang, Xingyu & Shu, Gequn & Wang, Xu, 2015. "Comparison and parameter optimization of a segmented thermoelectric generator by using the high temperature exhaust of a diesel engine," Energy, Elsevier, vol. 84(C), pages 121-130.
    14. Sajid, Muhammad & Hassan, Ibrahim & Rahman, Aziz, 2017. "An overview of cooling of thermoelectric devices," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 15-22.
    15. Liu, Xinxin & Wang, Ke & Shen, Zuguo, 2024. "A novel strategy of inserting radiation shields to enhance the performance of thermoelectric generator systems for industrial high-temperature heat recovery," Energy, Elsevier, vol. 301(C).
    16. Liang, Xingyu & Sun, Xiuxiu & Tian, Hua & Shu, Gequn & Wang, Yuesen & Wang, Xu, 2014. "Comparison and parameter optimization of a two-stage thermoelectric generator using high temperature exhaust of internal combustion engine," Applied Energy, Elsevier, vol. 130(C), pages 190-199.
    17. Martínez, A. & Astrain, D. & Rodríguez, A., 2013. "Dynamic model for simulation of thermoelectric self cooling applications," Energy, Elsevier, vol. 55(C), pages 1114-1126.
    18. Fabian Garmroudi & Michael Parzer & Alexander Riss & Andrei V. Ruban & Sergii Khmelevskyi & Michele Reticcioli & Matthias Knopf & Herwig Michor & Andrej Pustogow & Takao Mori & Ernst Bauer, 2022. "Anderson transition in stoichiometric Fe2VAl: high thermoelectric performance from impurity bands," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    19. Park, K. & Hwang, H.K. & Seo, J.W. & Seo, W.-S., 2013. "Enhanced high-temperature thermoelectric properties of Ce- and Dy-doped ZnO for power generation," Energy, Elsevier, vol. 54(C), pages 139-145.
    20. Ju, Chengjian & Dui, Guansuo & Zheng, Helen Hao & Xin, Libiao, 2017. "Revisiting the temperature dependence in material properties and performance of thermoelectric materials," Energy, Elsevier, vol. 124(C), pages 249-257.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:60:y:2013:i:c:p:453-456. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.