IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v142y2018icp813-821.html
   My bibliography  Save this article

A comprehensive model of a lead telluride thermoelectric generator

Author

Listed:
  • Kanimba, Eurydice
  • Pearson, Matthew
  • Sharp, Jeff
  • Stokes, David
  • Priya, Shashank
  • Tian, Zhiting

Abstract

Modeling thermoelectric generator (TEG) performances plays an important role in guiding the design of TEGs to achieve better efficiency. However, a rigorous 1-D TEG modeling performance has not yet been conducted, which prevents reliable prediction of TEG performance. In this work, a detailed 1-D model has been developed to take into account temperature-dependent thermoelectric material properties, heat loss due to radiation and conduction, and Thomson effect. A Lead Telluride (PbTe) TEG was chosen as a sample module and the modeling results agree very well with the experimental results, which proves how powerful the presented detailed 1-D model can be used to predict and validate TEG experimental results. TEG power and efficiency were found to have a respective decrease of 10% and 31% from the simplified model at a temperature gradient of 570 K. While heat loss attributable to conduction and radiation were found to be small, the Thomson effect, which is often neglected, was found to significantly reduce TEG performances. The deep analysis enabled by the new model provides useful guidelines to improve the performance of TEGs.

Suggested Citation

  • Kanimba, Eurydice & Pearson, Matthew & Sharp, Jeff & Stokes, David & Priya, Shashank & Tian, Zhiting, 2018. "A comprehensive model of a lead telluride thermoelectric generator," Energy, Elsevier, vol. 142(C), pages 813-821.
  • Handle: RePEc:eee:energy:v:142:y:2018:i:c:p:813-821
    DOI: 10.1016/j.energy.2017.10.067
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544217317723
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.10.067?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Wei-Hsin & Huang, Shih-Rong & Wang, Xiao-Dong & Wu, Po-Hua & Lin, Yu-Li, 2017. "Performance of a thermoelectric generator intensified by temperature oscillation," Energy, Elsevier, vol. 133(C), pages 257-269.
    2. Al-Nimr, Moh'd A. & Tashtoush, Bourhan M. & Jaradat, Ahmad A., 2015. "Modeling and simulation of thermoelectric device working as a heat pump and an electric generator under Mediterranean climate," Energy, Elsevier, vol. 90(P2), pages 1239-1250.
    3. Chen, Lingen & Li, Jun & Sun, Fengrui & Wu, Chih, 2005. "Performance optimization of a two-stage semiconductor thermoelectric-generator," Applied Energy, Elsevier, vol. 82(4), pages 300-312, December.
    4. Meng, Fankai & Chen, Lingen & Sun, Fengrui, 2011. "A numerical model and comparative investigation of a thermoelectric generator with multi-irreversibilities," Energy, Elsevier, vol. 36(5), pages 3513-3522.
    5. Yilbas, Bekir Sami & Akhtar, S.S. & Sahin, A.Z., 2016. "Thermal and stress analyses in thermoelectric generator with tapered and rectangular pin configurations," Energy, Elsevier, vol. 114(C), pages 52-63.
    6. Liu, Zhichun & Zhu, Shiping & Ge, Ya & Shan, Feng & Zeng, Lingping & Liu, Wei, 2017. "Geometry optimization of two-stage thermoelectric generators using simplified conjugate-gradient method," Applied Energy, Elsevier, vol. 190(C), pages 540-552.
    7. Wu, Yongjia & Zuo, Lei & Chen, Jie & Klein, Jackson A., 2016. "A model to analyze the device level performance of thermoelectric generator," Energy, Elsevier, vol. 115(P1), pages 591-603.
    8. Shen, Zu-Guo & Wu, Shuang-Ying & Xiao, Lan & Yin, Gang, 2016. "Theoretical modeling of thermoelectric generator with particular emphasis on the effect of side surface heat transfer," Energy, Elsevier, vol. 95(C), pages 367-379.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sarkar, Kamanashis & Debnath, Ajit & Deb, Krishna & Bera, Arun & Saha, Biswajit, 2019. "Effect of NiO incorporation in charge transport of polyaniline: Improved polymer based thermoelectric generator," Energy, Elsevier, vol. 177(C), pages 203-210.
    2. Elhenawy, Yasser & Bassyouni, Mohamed & Fouad, Kareem & Sandid, Abdelfatah Marni & Abu-Zeid, Mostafa Abd El-Rady & Majozi, Thokozani, 2023. "Experimental and numerical simulation of solar membrane distillation and humidification – dehumidification water desalination system," Renewable Energy, Elsevier, vol. 215(C).
    3. Lan, Yuncheng & Lu, Junhui & Wang, Suilin, 2023. "Study of the geometry and structure of a thermoelectric leg with variable material properties and side heat dissipation based on thermodynamic, economic, and environmental analysis," Energy, Elsevier, vol. 282(C).
    4. Nelson Calderón-Henao & Osvaldo José Venturini & Emerson Henrique Medina Franco & Electo Eduardo Silva Lora & Helton Fernando Scherer & Diego Mauricio Yepes Maya & Oswaldo Hideo Ando Junior, 2020. "Numerical–Experimental Performance Assessment of a Non-Concentrating Solar Thermoelectric Generator (STEG) Operating in the Southern Hemisphere," Energies, MDPI, vol. 13(10), pages 1-23, May.
    5. Lan, Yuncheng & Lu, Junhui & Li, Junming & Wang, Suilin, 2022. "Effects of temperature-dependent thermal properties and the side leg heat dissipation on the performance of the thermoelectric generator," Energy, Elsevier, vol. 243(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. He, Zhi-Zhu, 2020. "A coupled electrical-thermal impedance matching model for design optimization of thermoelectric generator," Applied Energy, Elsevier, vol. 269(C).
    2. Weng, Zebin & Liu, Furong & Zhu, Wenchao & Li, Yang & Xie, Changjun & Deng, Jian & Huang, Liang, 2022. "Performance improvement of variable-angle annular thermoelectric generators considering different boundary conditions," Applied Energy, Elsevier, vol. 306(PA).
    3. Ju, Chengjian & Dui, Guansuo & Zheng, Helen Hao & Xin, Libiao, 2017. "Revisiting the temperature dependence in material properties and performance of thermoelectric materials," Energy, Elsevier, vol. 124(C), pages 249-257.
    4. Lan, Yuncheng & Lu, Junhui & Wang, Suilin, 2023. "Study of the geometry and structure of a thermoelectric leg with variable material properties and side heat dissipation based on thermodynamic, economic, and environmental analysis," Energy, Elsevier, vol. 282(C).
    5. Chen, Wei-Hsin & Wang, Chi-Ming & Lee, Da-Sheng & Kwon, Eilhann E. & Ashokkumar, Veeramuthu & Culaba, Alvin B., 2022. "Optimization design by evolutionary computation for minimizing thermal stress of a thermoelectric generator with varied numbers of square pin fins," Applied Energy, Elsevier, vol. 314(C).
    6. Liu, Zhichun & Zhu, Shiping & Ge, Ya & Shan, Feng & Zeng, Lingping & Liu, Wei, 2017. "Geometry optimization of two-stage thermoelectric generators using simplified conjugate-gradient method," Applied Energy, Elsevier, vol. 190(C), pages 540-552.
    7. Lyudmyla Vikhor & Maxim Kotsur, 2023. "Evaluation of Efficiency for Miniscale Thermoelectric Converter under the Influence of Electrical and Thermal Resistance of Contacts," Energies, MDPI, vol. 16(10), pages 1-22, May.
    8. Attia, Peter M. & Lewis, Matthew R. & Bomberger, Cory C. & Prasad, Ajay K. & Zide, Joshua M.O., 2013. "Experimental studies of thermoelectric power generation in dynamic temperature environments," Energy, Elsevier, vol. 60(C), pages 453-456.
    9. Ge, Ya & Liu, Zhichun & Sun, Henan & Liu, Wei, 2018. "Optimal design of a segmented thermoelectric generator based on three-dimensional numerical simulation and multi-objective genetic algorithm," Energy, Elsevier, vol. 147(C), pages 1060-1069.
    10. Zhu, Yuxiao & Newbrook, Daniel W. & Dai, Peng & de Groot, C.H. Kees & Huang, Ruomeng, 2022. "Artificial neural network enabled accurate geometrical design and optimisation of thermoelectric generator," Applied Energy, Elsevier, vol. 305(C).
    11. Shittu, Samson & Li, Guiqiang & Xuan, Qindong & Zhao, Xudong & Ma, Xiaoli & Cui, Yu, 2020. "Electrical and mechanical analysis of a segmented solar thermoelectric generator under non-uniform heat flux," Energy, Elsevier, vol. 199(C).
    12. Ando Junior, O.H. & Maran, A.L.O. & Henao, N.C., 2018. "A review of the development and applications of thermoelectric microgenerators for energy harvesting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 376-393.
    13. Lan, Yuncheng & Lu, Junhui & Li, Junming & Wang, Suilin, 2022. "Effects of temperature-dependent thermal properties and the side leg heat dissipation on the performance of the thermoelectric generator," Energy, Elsevier, vol. 243(C).
    14. Cheng, Fuqiang & Hong, Yanji & Li, Weiping & Guo, Xiaohong & Zhang, Hailong & Fu, Feng & Feng, Bingqing & Wang, Gang & Wang, Chao & Qin, Haibing, 2017. "A thermoelectric generator for scavenging gas-heat: From module optimization to prototype test," Energy, Elsevier, vol. 121(C), pages 545-560.
    15. Huang, Yu-Xian & Wang, Xiao-Dong & Cheng, Chin-Hsiang & Lin, David Ta-Wei, 2013. "Geometry optimization of thermoelectric coolers using simplified conjugate-gradient method," Energy, Elsevier, vol. 59(C), pages 689-697.
    16. Sun, Yajing & Chen, Gang & Duan, Bo & Li, Guodong & Zhai, Pengcheng, 2019. "An annular thermoelectric couple analytical model by considering temperature-dependent material properties and Thomson effect," Energy, Elsevier, vol. 187(C).
    17. Liu, Xinxin & Wang, Ke & Shen, Zuguo, 2024. "A novel strategy of inserting radiation shields to enhance the performance of thermoelectric generator systems for industrial high-temperature heat recovery," Energy, Elsevier, vol. 301(C).
    18. Martínez, A. & Astrain, D. & Rodríguez, A., 2013. "Dynamic model for simulation of thermoelectric self cooling applications," Energy, Elsevier, vol. 55(C), pages 1114-1126.
    19. Gou, Xiaolong & Yang, Suwen & Xiao, Heng & Ou, Qiang, 2013. "A dynamic model for thermoelectric generator applied in waste heat recovery," Energy, Elsevier, vol. 52(C), pages 201-209.
    20. Shittu, Samson & Li, Guiqiang & Zhao, Xudong & Ma, Xiaoli, 2020. "Review of thermoelectric geometry and structure optimization for performance enhancement," Applied Energy, Elsevier, vol. 268(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:142:y:2018:i:c:p:813-821. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.