IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v90y2015ip1p359-368.html
   My bibliography  Save this article

Experimental investigation on thermophysical properties of capric acid–lauric acid phase change slurries for thermal storage system

Author

Listed:
  • Zhang, Zhaoli
  • Yuan, Yanping
  • Zhang, Nan
  • Cao, Xiaoling

Abstract

Possessing the fluxility of transfer fluids and the latent heat capacity of PCMs (phase change materials), fatty acids PCSs (phase change slurries) can be utilized as a superior alternative to store thermal energy collected from many fields. CA (Capric acid)–LA (lauric acid) PCSs, with span20/SDS used as emulsifiers in the mass ratio of 3.24:1, are prepared for the first time in this paper. The optimized parameters, including the concentration of fatty acids, shearing rate and shearing time, are investigated during the preparation based on the criteria of the average droplet size. The morphology, rheological behavior of obtained PCSs are also further elaborated, as well as thermophysical properties. The results indicate that obtained PCSs in the form of milky liquid occupy the average droplet size of 1 μm. Supercooling is alleviated from 20 °C to 10 °C by the introduction to hexadecanol. And the latent heat of PCSs with 30 wt% and 50 wt% fatty acids is 43.36 and 74.43 J/g, respectively. Additionally, fatty acids PCSs show excellent stability in the point view of the droplet size, viscosity and thermophysical properties under the conditions of storage and 100 freezing/melting cycles.

Suggested Citation

  • Zhang, Zhaoli & Yuan, Yanping & Zhang, Nan & Cao, Xiaoling, 2015. "Experimental investigation on thermophysical properties of capric acid–lauric acid phase change slurries for thermal storage system," Energy, Elsevier, vol. 90(P1), pages 359-368.
  • Handle: RePEc:eee:energy:v:90:y:2015:i:p1:p:359-368
    DOI: 10.1016/j.energy.2015.06.129
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544215008853
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2015.06.129?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lu, W. & Tassou, S.A., 2012. "Experimental study of the thermal characteristics of phase change slurries for active cooling," Applied Energy, Elsevier, vol. 91(1), pages 366-374.
    2. Zeng, Ju-Lan & Zheng, Shuang-Hao & Yu, Sai-Bo & Zhu, Fu-Rong & Gan, Juan & Zhu, Ling & Xiao, Zhong-Liang & Zhu, Xin-Yu & Zhu, Zhen & Sun, Li-Xian & Cao, Zhong, 2014. "Preparation and thermal properties of palmitic acid/polyaniline/exfoliated graphite nanoplatelets form-stable phase change materials," Applied Energy, Elsevier, vol. 115(C), pages 603-609.
    3. Li, Wei & Zhang, Rong & Jiang, Nan & Tang, Xiao-fen & Shi, Hai-feng & Zhang, Xing-xiang & Zhang, Yuankai & Dong, Lin & Zhang, Ningxin, 2013. "Composite macrocapsule of phase change materials/expanded graphite for thermal energy storage," Energy, Elsevier, vol. 57(C), pages 607-614.
    4. Yuan, Yanping & Zhang, Nan & Tao, Wenquan & Cao, Xiaoling & He, Yaling, 2014. "Fatty acids as phase change materials: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 482-498.
    5. Cao, Fangyu & Yang, Bao, 2014. "Supercooling suppression of microencapsulated phase change materials by optimizing shell composition and structure," Applied Energy, Elsevier, vol. 113(C), pages 1512-1518.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ludger Fischer & Ernesto Mura & Poppy O’Neill & Silvan von Arx & Jörg Worlitschek & Geng Qiao & Qi Li & Yulong Ding, 2021. "Heat Transfer Performance Potential with a High-Temperature Phase Change Dispersion," Energies, MDPI, vol. 14(16), pages 1-13, August.
    2. Zhang, Guanhua & Yu, Zhenjie & Cui, Guomin & Dou, Binlin & Lu, Wei & Yan, Xiaoyu, 2020. "Fabrication of a novel nano phase change material emulsion with low supercooling and enhanced thermal conductivity," Renewable Energy, Elsevier, vol. 151(C), pages 542-550.
    3. Gao, Xiangkui & Xiao, Yimin & Gao, penghui & Zhang, Zujing & Sun, Meng, 2022. "Experimental study of the effect of high humidity on the phase change plate thermal storage under natural convection," Energy, Elsevier, vol. 256(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gunasekara, Saman Nimali & Martin, Viktoria & Chiu, Justin Ningwei, 2017. "Phase equilibrium in the design of phase change materials for thermal energy storage: State-of-the-art," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 558-581.
    2. Wu, Wenhao & Huang, Xinyu & Li, Kai & Yao, Ruimin & Chen, Renjie & Zou, Ruqiang, 2017. "A functional form-stable phase change composite with high efficiency electro-to-thermal energy conversion," Applied Energy, Elsevier, vol. 190(C), pages 474-480.
    3. Yuan, Yanping & Zhang, Nan & Li, Tianyu & Cao, Xiaoling & Long, Weiyue, 2016. "Thermal performance enhancement of palmitic-stearic acid by adding graphene nanoplatelets and expanded graphite for thermal energy storage: A comparative study," Energy, Elsevier, vol. 97(C), pages 488-497.
    4. Darzi, Mohammad Ebrahimnejad & Golestaneh, Seyyed Iman & Kamali, Marziyeh & Karimi, Gholamreza, 2019. "Thermal and electrical performance analysis of co-electrospun-electrosprayed PCM nanofiber composites in the presence of graphene and carbon fiber powder," Renewable Energy, Elsevier, vol. 135(C), pages 719-728.
    5. Tang, Jia & Yang, Mu & Yu, Fang & Chen, Xingyu & Tan, Li & Wang, Ge, 2017. "1-Octadecanol@hierarchical porous polymer composite as a novel shape-stability phase change material for latent heat thermal energy storage," Applied Energy, Elsevier, vol. 187(C), pages 514-522.
    6. Song, Yanlin & Zhang, Nan & Yuan, Yanping & Yang, Li & Cao, Xiaoling, 2019. "Prediction of the solid effective thermal conductivity of fatty acid/carbon material composite phase change materials based on fractal theory," Energy, Elsevier, vol. 170(C), pages 752-762.
    7. Wei, Haiting & Xie, Xiuzhen & Li, Xiangqi & Lin, Xingshui, 2016. "Preparation and characterization of capric-myristic-stearic acid eutectic mixture/modified expanded vermiculite composite as a form-stable phase change material," Applied Energy, Elsevier, vol. 178(C), pages 616-623.
    8. Li, Min & Mu, Boyuan, 2019. "Effect of different dimensional carbon materials on the properties and application of phase change materials: A review," Applied Energy, Elsevier, vol. 242(C), pages 695-715.
    9. Tang, Yaojie & Su, Di & Huang, Xiang & Alva, Guruprasad & Liu, Lingkun & Fang, Guiyin, 2016. "Synthesis and thermal properties of the MA/HDPE composites with nano-additives as form-stable PCM with improved thermal conductivity," Applied Energy, Elsevier, vol. 180(C), pages 116-129.
    10. Wei, Xiao & Xue, Fei & Qi, Xiao-dong & Yang, Jing-hui & Zhou, Zuo-wan & Yuan, Yan-ping & Wang, Yong, 2019. "Photo- and electro-responsive phase change materials based on highly anisotropic microcrystalline cellulose/graphene nanoplatelet structure," Applied Energy, Elsevier, vol. 236(C), pages 70-80.
    11. Sarı, Ahmet & Alkan, Cemil & Bilgin, Cahit, 2014. "Micro/nano encapsulation of some paraffin eutectic mixtures with poly(methyl methacrylate) shell: Preparation, characterization and latent heat thermal energy storage properties," Applied Energy, Elsevier, vol. 136(C), pages 217-227.
    12. Cao, Lei & Su, Di & Tang, Yaojie & Fang, Guiyin & Tang, Fang, 2015. "Properties evaluation and applications of thermal energystorage materials in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 500-522.
    13. Dongyi Zhou & Jiawei Yuan & Yuhong Zhou & Yicai Liu, 2020. "Preparation and Properties of Capric–Myristic Acid/Expanded Graphite Composite Phase Change Materials for Latent Heat Thermal Energy Storage," Energies, MDPI, vol. 13(10), pages 1-12, May.
    14. Khan, Mohammed Mumtaz A. & Saidur, R. & Al-Sulaiman, Fahad A., 2017. "A review for phase change materials (PCMs) in solar absorption refrigeration systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 105-137.
    15. Khadiran, Tumirah & Hussein, Mohd Zobir & Zainal, Zulkarnain & Rusli, Rafeadah, 2016. "Advanced energy storage materials for building applications and their thermal performance characterization: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 916-928.
    16. Zeinelabdein, Rami & Omer, Siddig & Gan, Guohui, 2018. "Critical review of latent heat storage systems for free cooling in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2843-2868.
    17. Golestaneh, S.I. & Mosallanejad, A. & Karimi, G. & Khorram, M. & Khashi, M., 2016. "Fabrication and characterization of phase change material composite fibers with wide phase-transition temperature range by co-electrospinning method," Applied Energy, Elsevier, vol. 182(C), pages 409-417.
    18. Xia, Mingzhu & Yuan, Yanping & Zhao, Xudong & Cao, Xiaoling & Tang, Zhonghua, 2016. "Cold storage condensation heat recovery system with a novel composite phase change material," Applied Energy, Elsevier, vol. 175(C), pages 259-268.
    19. Mingli Li & Guoqing Gui & Zhibin Lin & Long Jiang & Hong Pan & Xingyu Wang, 2018. "Numerical Thermal Characterization and Performance Metrics of Building Envelopes Containing Phase Change Materials for Energy-Efficient Buildings," Sustainability, MDPI, vol. 10(8), pages 1-23, July.
    20. Luo, Chenglong & Xu, Lijie & Ji, Jie & Liao, Mengyin & Sun, Dan, 2017. "Experimental study of a modified solar phase change material storage wall system," Energy, Elsevier, vol. 128(C), pages 224-231.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:90:y:2015:i:p1:p:359-368. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.