IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v90y2015ip1p286-298.html
   My bibliography  Save this article

Different interpretations of the cost-effectiveness of renewable electricity support: Some analytical results

Author

Listed:
  • Cerdá, Emilio
  • del Río, Pablo

Abstract

One of the main criteria to assess the success of instruments to support electricity from renewable energy sources (RES-E) is cost-effectiveness. However, a consensus on the definition of cost-effectiveness does not yet exist in the literature. For some authors, cost-effectiveness refers to the minimisation of RES-E generation costs, but others define it as the minimisation of the costs of RES-E support. This paper compares the two main interpretations of this concept using a mathematical model. The optimisation problems of both approaches are formally stated, the corresponding optimality conditions are obtained, the optimal solutions of both approaches are compared and some rent transfer mechanisms from consumers to producers are proposed. It is shown that the minimisation of generation costs does not imply that consumer costs are minimised, and that the minimisation of consumer costs does not imply that generation costs are minimised. In addition, two types of mechanisms of transfer of rents from consumers to producers which lead to the same optimal solution for both approaches are proposed.

Suggested Citation

  • Cerdá, Emilio & del Río, Pablo, 2015. "Different interpretations of the cost-effectiveness of renewable electricity support: Some analytical results," Energy, Elsevier, vol. 90(P1), pages 286-298.
  • Handle: RePEc:eee:energy:v:90:y:2015:i:p1:p:286-298
    DOI: 10.1016/j.energy.2015.06.075
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544215008312
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2015.06.075?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Richard Green & Adonis Yatchew, 2012. "Support Schemes for Renewable Energy: An Economic Analysis," Economics of Energy & Environmental Policy, International Association for Energy Economics, vol. 0(Number 2).
    2. Geoffrey Heal, 2010. "Reflections--The Economics of Renewable Energy in the United States," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 4(1), pages 139-154, Winter.
    3. Allan, Grant & Gilmartin, Michelle & McGregor, Peter & Swales, Kim, 2011. "Levelised costs of Wave and Tidal energy in the UK: Cost competitiveness and the importance of "banded" Renewables Obligation Certificates," Energy Policy, Elsevier, vol. 39(1), pages 23-39, January.
    4. Kitzing, Lena, 2014. "Risk implications of renewable support instruments: Comparative analysis of feed-in tariffs and premiums using a mean–variance approach," Energy, Elsevier, vol. 64(C), pages 495-505.
    5. Aune, Finn Roar & Dalen, Hanne Marit & Hagem, Cathrine, 2012. "Implementing the EU renewable target through green certificate markets," Energy Economics, Elsevier, vol. 34(4), pages 992-1000.
    6. Verbruggen, Aviel & Lauber, Volkmar, 2012. "Assessing the performance of renewable electricity support instruments," Energy Policy, Elsevier, vol. 45(C), pages 635-644.
    7. Narbel, Patrick A., 2014. "Rethinking how to support intermittent renewables," Discussion Papers 2014/17, Norwegian School of Economics, Department of Business and Management Science.
    8. Paul L. Joskow, 2011. "Comparing the Costs of Intermittent and Dispatchable Electricity Generating Technologies," American Economic Review, American Economic Association, vol. 101(3), pages 238-241, May.
    9. Gunnar Luderer & Volker Krey & Katherine Calvin & James Merrick & Silvana Mima & Robert Pietzcker & Jasper Vliet & Kenichi Wada, 2014. "The role of renewable energy in climate stabilization: results from the EMF27 scenarios," Climatic Change, Springer, vol. 123(3), pages 427-441, April.
    10. Narbel, Patrick A., 2014. "Rethinking how to support intermittent renewables," Energy, Elsevier, vol. 77(C), pages 414-421.
    11. Gunnar Luderer & Volker Krey & Katherine Calvin & James Merrick & Silvana Mima & Robert Pietzcker & Jasper van Vliet & Kenichi Wada, 2014. "The role of renewable energy in climate stabilization: results from the EMF27 scenarios," Post-Print halshs-00961843, HAL.
    12. Gautam Gowrisankaran & Stanley S. Reynolds & Mario Samano, 2016. "Intermittency and the Value of Renewable Energy," Journal of Political Economy, University of Chicago Press, vol. 124(4), pages 1187-1234.
    13. Haas, Reinhard & Resch, Gustav & Panzer, Christian & Busch, Sebastian & Ragwitz, Mario & Held, Anne, 2011. "Efficiency and effectiveness of promotion systems for electricity generation from renewable energy sources – Lessons from EU countries," Energy, Elsevier, vol. 36(4), pages 2186-2193.
    14. Edenhofer, Ottmar & Hirth, Lion & Knopf, Brigitte & Pahle, Michael & Schlömer, Steffen & Schmid, Eva & Ueckerdt, Falko, 2013. "On the economics of renewable energy sources," Energy Economics, Elsevier, vol. 40(S1), pages 12-23.
    15. del Río, Pablo & Cerdá, Emilio, 2014. "The policy implications of the different interpretations of the cost-effectiveness of renewable electricity support," Energy Policy, Elsevier, vol. 64(C), pages 364-372.
    16. Ueckerdt, Falko & Hirth, Lion & Luderer, Gunnar & Edenhofer, Ottmar, 2013. "System LCOE: What are the costs of variable renewables?," Energy, Elsevier, vol. 63(C), pages 61-75.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hansen, J.P. & Narbel, P.A. & Aksnes, D.L., 2017. "Limits to growth in the renewable energy sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 769-774.
    2. García-Álvarez, María Teresa & Cabeza-García, Laura & Soares, Isabel, 2017. "Analysis of the promotion of onshore wind energy in the EU: Feed-in tariff or renewable portfolio standard?," Renewable Energy, Elsevier, vol. 111(C), pages 256-264.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Davi-Arderius, Daniel & Trujillo-Baute, Elisa & del Río, Pablo, 2023. "Grid investment and subsidy tradeoffs in renewable electricity auctions," Utilities Policy, Elsevier, vol. 84(C).
    2. del Río, Pablo & Cerdá, Emilio, 2014. "The policy implications of the different interpretations of the cost-effectiveness of renewable electricity support," Energy Policy, Elsevier, vol. 64(C), pages 364-372.
    3. Lion Hirth, Falko Ueckerdt, and Ottmar Edenhofer, 2016. "Why Wind Is Not Coal: On the Economics of Electricity Generation," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3).
    4. Merrick, James H., 2016. "On representation of temporal variability in electricity capacity planning models," Energy Economics, Elsevier, vol. 59(C), pages 261-274.
    5. Ruhnau, Oliver, 2022. "How flexible electricity demand stabilizes wind and solar market values: The case of hydrogen electrolyzers," Applied Energy, Elsevier, vol. 307(C).
    6. Bistline, John E., 2017. "Economic and technical challenges of flexible operations under large-scale variable renewable deployment," Energy Economics, Elsevier, vol. 64(C), pages 363-372.
    7. Ueckerdt, Falko & Brecha, Robert & Luderer, Gunnar, 2015. "Analyzing major challenges of wind and solar variability in power systems," Renewable Energy, Elsevier, vol. 81(C), pages 1-10.
    8. Coester, Andreas & Hofkes, Marjan W. & Papyrakis, Elissaios, 2018. "Economics of renewable energy expansion and security of supply: A dynamic simulation of the German electricity market," Applied Energy, Elsevier, vol. 231(C), pages 1268-1284.
    9. Ruhnau, Oliver & Hirth, Lion & Praktiknjo, Aaron, 2020. "Heating with wind: Economics of heat pumps and variable renewables," Energy Economics, Elsevier, vol. 92(C).
    10. Soria, Rafael & Portugal-Pereira, Joana & Szklo, Alexandre & Milani, Rodrigo & Schaeffer, Roberto, 2015. "Hybrid concentrated solar power (CSP)–biomass plants in a semiarid region: A strategy for CSP deployment in Brazil," Energy Policy, Elsevier, vol. 86(C), pages 57-72.
    11. Scholz, Yvonne & Gils, Hans Christian & Pietzcker, Robert C., 2017. "Application of a high-detail energy system model to derive power sector characteristics at high wind and solar shares," Energy Economics, Elsevier, vol. 64(C), pages 568-582.
    12. Romeiro, Diogo Lisbona & Almeida, Edmar Luiz Fagundes de & Losekann, Luciano, 2020. "Systemic value of electricity sources – What we can learn from the Brazilian experience?," Energy Policy, Elsevier, vol. 138(C).
    13. Wiser, Ryan & Bolinger, Mark & Heath, Garvin & Keyser, David & Lantz, Eric & Macknick, Jordan & Mai, Trieu & Millstein, Dev, 2016. "Long-term implications of sustained wind power growth in the United States: Potential benefits and secondary impacts," Applied Energy, Elsevier, vol. 179(C), pages 146-158.
    14. Johannes Pfeiffer, 2017. "Fossil Resources and Climate Change – The Green Paradox and Resource Market Power Revisited in General Equilibrium," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 77.
    15. Hirth, Lion & Ueckerdt, Falko & Edenhofer, Ottmar, 2015. "Integration costs revisited – An economic framework for wind and solar variability," Renewable Energy, Elsevier, vol. 74(C), pages 925-939.
    16. Ueckerdt, Falko & Pietzcker, Robert & Scholz, Yvonne & Stetter, Daniel & Giannousakis, Anastasis & Luderer, Gunnar, 2017. "Decarbonizing global power supply under region-specific consideration of challenges and options of integrating variable renewables in the REMIND model," Energy Economics, Elsevier, vol. 64(C), pages 665-684.
    17. Pietzcker, Robert C. & Ueckerdt, Falko & Carrara, Samuel & de Boer, Harmen Sytze & Després, Jacques & Fujimori, Shinichiro & Johnson, Nils & Kitous, Alban & Scholz, Yvonne & Sullivan, Patrick & Ludere, 2017. "System integration of wind and solar power in integrated assessment models: A cross-model evaluation of new approaches," Energy Economics, Elsevier, vol. 64(C), pages 583-599.
    18. Hirth, Lion, 2013. "The market value of variable renewables," Energy Economics, Elsevier, vol. 38(C), pages 218-236.
    19. Alexandra G. Papadopoulou & George Vasileiou & Alexandros Flamos, 2020. "A Comparison of Dispatchable RES Technoeconomics: Is There a Niche for Concentrated Solar Power?," Energies, MDPI, vol. 13(18), pages 1-22, September.
    20. Engelhorn, Thorsten & Müsgens, Felix, 2021. "Why is Germany’s energy transition so expensive? Quantifying the costs of wind-energy decentralisation," Resource and Energy Economics, Elsevier, vol. 65(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:90:y:2015:i:p1:p:286-298. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.