IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v64y2014icp495-505.html
   My bibliography  Save this article

Risk implications of renewable support instruments: Comparative analysis of feed-in tariffs and premiums using a mean–variance approach

Author

Listed:
  • Kitzing, Lena

Abstract

Different support instruments for renewable energy expose investors differently to market risks. This has implications on the attractiveness of investment. We use mean–variance portfolio analysis to identify the risk implications of two support instruments: feed-in tariffs and feed-in premiums. Using cash flow analysis, Monte Carlo simulations and mean–variance analysis, we quantify risk-return relationships for an exemplary offshore wind park in a simplified setting. We show that feed-in tariffs systematically require lower direct support levels than feed-in premiums while providing the same attractiveness for investment, because they expose investors to less market risk. These risk implications should be considered when designing policy schemes.

Suggested Citation

  • Kitzing, Lena, 2014. "Risk implications of renewable support instruments: Comparative analysis of feed-in tariffs and premiums using a mean–variance approach," Energy, Elsevier, vol. 64(C), pages 495-505.
  • Handle: RePEc:eee:energy:v:64:y:2014:i:c:p:495-505
    DOI: 10.1016/j.energy.2013.10.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544213008414
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2013.10.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Guerrero-Lemus, Ricardo & Marrero, Gustavo A. & Puch, Luis A., 2012. "Costs for conventional and renewable fuels and electricity in the worldwide transport sector: A mean–variance portfolio approach," Energy, Elsevier, vol. 44(1), pages 178-188.
    2. Roques, Fabien A. & Newbery, David M. & Nuttall, William J., 2008. "Fuel mix diversification incentives in liberalized electricity markets: A Mean-Variance Portfolio theory approach," Energy Economics, Elsevier, vol. 30(4), pages 1831-1849, July.
    3. Lena Kitzing & Sascha T. Schröder, 2012. "Regulating Future Offshore Grids: Economic Impact Analysis on Wind Parks and Transmission System Operators," RSCAS Working Papers 2012/65, European University Institute.
    4. Lund, Henrik, 2005. "Large-scale integration of wind power into different energy systems," Energy, Elsevier, vol. 30(13), pages 2402-2412.
    5. Couture, Toby & Gagnon, Yves, 2010. "An analysis of feed-in tariff remuneration models: Implications for renewable energy investment," Energy Policy, Elsevier, vol. 38(2), pages 955-965, February.
    6. Sensfuß, Frank & Ragwitz, Mario & Genoese, Massimo, 2007. "The merit-order effect: a detailed analysis of the price effect of renewable electricity generation on spot market prices in Germany," Working Papers "Sustainability and Innovation" S7/2007, Fraunhofer Institute for Systems and Innovation Research (ISI).
    7. Francisco Munoz & Enzo Sauma & Benjamin Hobbs, 2013. "Approximations in power transmission planning: implications for the cost and performance of renewable portfolio standards," Journal of Regulatory Economics, Springer, vol. 43(3), pages 305-338, June.
    8. Harry Markowitz, 1952. "Portfolio Selection," Journal of Finance, American Finance Association, vol. 7(1), pages 77-91, March.
    9. Avinash K. Dixit & Robert S. Pindyck, 1994. "Investment under Uncertainty," Economics Books, Princeton University Press, edition 1, number 5474.
    10. Levitt, Andrew C. & Kempton, Willett & Smith, Aaron P. & Musial, Walt & Firestone, Jeremy, 2011. "Pricing offshore wind power," Energy Policy, Elsevier, vol. 39(10), pages 6408-6421, October.
    11. K. Borch, 1969. "A Note on Uncertainty and Indifference Curves," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 36(1), pages 1-4.
    12. Dowd, Kevin, 2000. "Adjusting for risk:: An improved Sharpe ratio," International Review of Economics & Finance, Elsevier, vol. 9(3), pages 209-222, July.
    13. H. Brett Humphreys & Katherine T. McClain, 1998. "Reducing the Impacts of Energy Price Volatility Through Dynamic Portfolio Selection," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 107-131.
    14. Hirth, Lion, 2013. "The market value of variable renewables," Energy Economics, Elsevier, vol. 38(C), pages 218-236.
    15. Maria Kopsakangas-Savolainen & Rauli Svento, 2013. "Promotion of Market Access for Renewable Energy in the Nordic Power Markets," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 54(4), pages 549-569, April.
    16. Villanueva, D. & Feijóo, A., 2010. "Wind power distributions: A review of their applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(5), pages 1490-1495, June.
    17. Westner, Günther & Madlener, Reinhard, 2011. "Development of cogeneration in Germany: A mean-variance portfolio analysis of individual technology’s prospects in view of the new regulatory framework," Energy, Elsevier, vol. 36(8), pages 5301-5313.
    18. Kitzing, Lena & Mitchell, Catherine & Morthorst, Poul Erik, 2012. "Renewable energy policies in Europe: Converging or diverging?," Energy Policy, Elsevier, vol. 51(C), pages 192-201.
    19. Bar-Lev, Dan & Katz, Steven, 1976. "A Portfolio Approach to Fossil Fuel Procurement in the Electric Utility Industry," Journal of Finance, American Finance Association, vol. 31(3), pages 933-947, June.
    20. Butler, Lucy & Neuhoff, Karsten, 2008. "Comparison of feed-in tariff, quota and auction mechanisms to support wind power development," Renewable Energy, Elsevier, vol. 33(8), pages 1854-1867.
    21. Carta, José A. & Velázquez, Sergio, 2011. "A new probabilistic method to estimate the long-term wind speed characteristics at a potential wind energy conversion site," Energy, Elsevier, vol. 36(5), pages 2671-2685.
    22. Arnesano, M. & Carlucci, A.P. & Laforgia, D., 2012. "Extension of portfolio theory application to energy planning problem – The Italian case," Energy, Elsevier, vol. 39(1), pages 112-124.
    23. Pousinho, H.M.I. & Mendes, V.M.F. & Catalão, J.P.S., 2011. "A risk-averse optimization model for trading wind energy in a market environment under uncertainty," Energy, Elsevier, vol. 36(8), pages 4935-4942.
    24. Zhu, Lei & Fan, Ying, 2010. "Optimization of China's generating portfolio and policy implications based on portfolio theory," Energy, Elsevier, vol. 35(3), pages 1391-1402.
    25. Munksgaard, Jesper & Morthorst, Poul Erik, 2008. "Wind power in the Danish liberalised power market--Policy measures, price impact and investor incentives," Energy Policy, Elsevier, vol. 36(10), pages 3940-3947, October.
    26. Gross, Robert & Blyth, William & Heptonstall, Philip, 2010. "Risks, revenues and investment in electricity generation: Why policy needs to look beyond costs," Energy Economics, Elsevier, vol. 32(4), pages 796-804, July.
    27. Blanco, María Isabel, 2009. "The economics of wind energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1372-1382, August.
    28. Mitchell, C. & Bauknecht, D. & Connor, P.M., 2006. "Effectiveness through risk reduction: a comparison of the renewable obligation in England and Wales and the feed-in system in Germany," Energy Policy, Elsevier, vol. 34(3), pages 297-305, February.
    29. Falconett, Irina & Nagasaka, Ken, 2010. "Comparative analysis of support mechanisms for renewable energy technologies using probability distributions," Renewable Energy, Elsevier, vol. 35(6), pages 1135-1144.
    30. Awerbuch, Shimon, 1995. "Market-based IRP: It's easy!!!," The Electricity Journal, Elsevier, vol. 8(3), pages 50-67, April.
    31. Sun, Xiaojing & Huang, Diangui & Wu, Guoqing, 2012. "The current state of offshore wind energy technology development," Energy, Elsevier, vol. 41(1), pages 298-312.
    32. Awerbuch, Shimon, 1993. "The surprising role of risk in utility integrated resource planning," The Electricity Journal, Elsevier, vol. 6(3), pages 20-33, April.
    33. Wüstenhagen, Rolf & Menichetti, Emanuela, 2012. "Strategic choices for renewable energy investment: Conceptual framework and opportunities for further research," Energy Policy, Elsevier, vol. 40(C), pages 1-10.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kitzing, Lena & Juul, Nina & Drud, Michael & Boomsma, Trine Krogh, 2017. "A real options approach to analyse wind energy investments under different support schemes," Applied Energy, Elsevier, vol. 188(C), pages 83-96.
    2. Zhu, Lei & Fan, Ying, 2010. "Optimization of China's generating portfolio and policy implications based on portfolio theory," Energy, Elsevier, vol. 35(3), pages 1391-1402.
    3. Pérez Odeh, Rodrigo & Watts, David & Flores, Yarela, 2018. "Planning in a changing environment: Applications of portfolio optimisation to deal with risk in the electricity sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3808-3823.
    4. Pérez de Arce, Miguel & Sauma, Enzo & Contreras, Javier, 2016. "Renewable energy policy performance in reducing CO2 emissions," Energy Economics, Elsevier, vol. 54(C), pages 272-280.
    5. deLlano-Paz, Fernando & Calvo-Silvosa, Anxo & Antelo, Susana Iglesias & Soares, Isabel, 2017. "Energy planning and modern portfolio theory: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 636-651.
    6. Daniel Ziegler & Katrin Schmitz & Christoph Weber, 2012. "Optimal electricity generation portfolios," Computational Management Science, Springer, vol. 9(3), pages 381-399, August.
    7. Fuss, Sabine & Szolgayová, Jana & Khabarov, Nikolay & Obersteiner, Michael, 2012. "Renewables and climate change mitigation: Irreversible energy investment under uncertainty and portfolio effects," Energy Policy, Elsevier, vol. 40(C), pages 59-68.
    8. Botor, Benjamin & Böcker, Benjamin & Kallabis, Thomas & Weber, Christoph, 2021. "Information shocks and profitability risks for power plant investments – impacts of policy instruments," Energy Economics, Elsevier, vol. 102(C).
    9. de-Llano Paz, Fernando & Antelo, Susana Iglesias & Calvo Silvosa, Anxo & Soares, Isabel, 2014. "The technological and environmental efficiency of the EU-27 power mix: An evaluation based on MPT," Energy, Elsevier, vol. 69(C), pages 67-81.
    10. deLlano-Paz, Fernando & Calvo-Silvosa, Anxo & Iglesias Antelo, Susana & Soares, Isabel, 2015. "The European low-carbon mix for 2030: The role of renewable energy sources in an environmentally and socially efficient approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 49-61.
    11. Ioannou, Anastasia & Angus, Andrew & Brennan, Feargal, 2017. "Risk-based methods for sustainable energy system planning: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 602-615.
    12. Pérez Odeh, Rodrigo & Watts, David & Negrete-Pincetic, Matías, 2018. "Portfolio applications in electricity markets review: Private investor and manager perspective trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 192-204.
    13. Marc Baudry & Clément Bonnet, 2016. "Demand pull isntruments and the development of wind power in Europe: A counter-factual analysis," Working Papers 1607, Chaire Economie du climat.
    14. Fridgen, Gilbert & Halbrügge, Stephanie & Olenberger, Christian & Weibelzahl, Martin, 2020. "The insurance effect of renewable distributed energy resources against uncertain electricity price developments," Energy Economics, Elsevier, vol. 91(C).
    15. Marrero, Gustavo A. & Puch, Luis A. & Ramos-Real, Francisco J., 2015. "Mean-variance portfolio methods for energy policy risk management," International Review of Economics & Finance, Elsevier, vol. 40(C), pages 246-264.
    16. Zhang, Shuang & Zhao, Tao & Xie, Bai-Chen, 2018. "What is the optimal power generation mix of China? An empirical analysis using portfolio theory," Applied Energy, Elsevier, vol. 229(C), pages 522-536.
    17. Marc Baudry & Clément Bonnet, 2019. "Demand-Pull Instruments and the Development of Wind Power in Europe: A Counterfactual Analysis," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 73(2), pages 385-429, June.
    18. Grashof, Katherina, 2019. "Are auctions likely to deter community wind projects? And would this be problematic?," Energy Policy, Elsevier, vol. 125(C), pages 20-32.
    19. Locatelli, Giorgio & Mancini, Mauro, 2011. "Large and small baseload power plants: Drivers to define the optimal portfolios," Energy Policy, Elsevier, vol. 39(12), pages 7762-7775.
    20. Zhang, Mingming & Tang, Yamei & Liu, Liyun & Zhou, Dequn, 2022. "Optimal investment portfolio strategies for power enterprises under multi-policy scenarios of renewable energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:64:y:2014:i:c:p:495-505. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.