IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v32y2007i9p1731-1744.html
   My bibliography  Save this article

Mapping the potential for decentralized energy generation based on renewable energy sources in the Republic of Croatia

Author

Listed:
  • Schneider, Daniel R.
  • Duić, Neven
  • Bogdan, Željko

Abstract

There are regions in the Republic of Croatia (underdeveloped, devastated by war, depopulated, as well as islands and mountainous areas) which are still disconnected from the electricity network or where the current network capacity is insufficient. In addition, these regions have good renewable energy potential. Since the decentralized energy generation (DEG) covers a broad range of technologies, including many renewable energy technologies (RET) that provide small-scale power at sites close to the users, this concept could be of interest for these locations. This paper identifies the areas in Croatia where such systems could be applied. Consideration is given to geographical locations as well as possible applications. Wind, hydro, solar photovoltaic, geothermal, and biomass conversion systems were analyzed from a technological and economic point of view. Since the renewable energy sources (RES) data for Croatia are rather scarce, the intention was to give a survey of the present situation and an estimate of future potential for DEG based on RES. The energy potential (given as capacity and energy capability) and production costs were calculated on a regional basis and per type of RET. Finally, the RES cost–supply curves for 2006 and 2010 are given.

Suggested Citation

  • Schneider, Daniel R. & Duić, Neven & Bogdan, Željko, 2007. "Mapping the potential for decentralized energy generation based on renewable energy sources in the Republic of Croatia," Energy, Elsevier, vol. 32(9), pages 1731-1744.
  • Handle: RePEc:eee:energy:v:32:y:2007:i:9:p:1731-1744
    DOI: 10.1016/j.energy.2006.12.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544206003471
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2006.12.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lund, Henrik & Østergaard, Poul Alberg, 2000. "Electric grid and heat planning scenarios with centralised and distributed sources of conventional, CHP and wind generation," Energy, Elsevier, vol. 25(4), pages 299-312.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mathiesen, B.V. & Lund, H. & Connolly, D. & Wenzel, H. & Østergaard, P.A. & Möller, B. & Nielsen, S. & Ridjan, I. & Karnøe, P. & Sperling, K. & Hvelplund, F.K., 2015. "Smart Energy Systems for coherent 100% renewable energy and transport solutions," Applied Energy, Elsevier, vol. 145(C), pages 139-154.
    2. Cavallo, Alfred, 2007. "Controllable and affordable utility-scale electricity from intermittent wind resources and compressed air energy storage (CAES)," Energy, Elsevier, vol. 32(2), pages 120-127.
    3. Østergaard, Poul Alberg, 2006. "Ancillary services and the integration of substantial quantities of wind power," Applied Energy, Elsevier, vol. 83(5), pages 451-463, May.
    4. Averfalk, Helge & Ingvarsson, Paul & Persson, Urban & Gong, Mei & Werner, Sven, 2017. "Large heat pumps in Swedish district heating systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1275-1284.
    5. Deshmukh, M.K. & Deshmukh, S.S., 2008. "Modeling of hybrid renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(1), pages 235-249, January.
    6. Kwon, Pil Seok & Østergaard, Poul, 2014. "Assessment and evaluation of flexible demand in a Danish future energy scenario," Applied Energy, Elsevier, vol. 134(C), pages 309-320.
    7. Möller, Bernd & Lund, Henrik, 2010. "Conversion of individual natural gas to district heating: Geographical studies of supply costs and consequences for the Danish energy system," Applied Energy, Elsevier, vol. 87(6), pages 1846-1857, June.
    8. Franki, Vladimir & Višković, Alfredo, 2021. "Multi-criteria decision support: A case study of Southeast Europe power systems," Utilities Policy, Elsevier, vol. 73(C).
    9. Oropeza-Perez, Ivan & Østergaard, Poul Alberg, 2014. "Energy saving potential of utilizing natural ventilation under warm conditions – A case study of Mexico," Applied Energy, Elsevier, vol. 130(C), pages 20-32.
    10. Sevdari, Kristian & Calearo, Lisa & Andersen, Peter Bach & Marinelli, Mattia, 2022. "Ancillary services and electric vehicles: An overview from charging clusters and chargers technology perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    11. Connolly, D. & Lund, H. & Mathiesen, B.V. & Werner, S. & Möller, B. & Persson, U. & Boermans, T. & Trier, D. & Østergaard, P.A. & Nielsen, S., 2014. "Heat Roadmap Europe: Combining district heating with heat savings to decarbonise the EU energy system," Energy Policy, Elsevier, vol. 65(C), pages 475-489.
    12. Syranidis, Konstantinos & Robinius, Martin & Stolten, Detlef, 2018. "Control techniques and the modeling of electrical power flow across transmission networks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3452-3467.
    13. Lund, Henrik & Munster, Ebbe, 2006. "Integrated energy systems and local energy markets," Energy Policy, Elsevier, vol. 34(10), pages 1152-1160, July.
    14. Lund, H. & Mathiesen, B.V., 2009. "Energy system analysis of 100% renewable energy systems—The case of Denmark in years 2030 and 2050," Energy, Elsevier, vol. 34(5), pages 524-531.
    15. Andersen, Anders N. & Østergaard, Poul Alberg, 2018. "A method for assessing support schemes promoting flexibility at district energy plants," Applied Energy, Elsevier, vol. 225(C), pages 448-459.
    16. Andersen, Anders N. & Østergaard, Poul Alberg, 2020. "Support schemes adapting district energy combined heat and power for the role as a flexibility provider in renewable energy systems," Energy, Elsevier, vol. 192(C).
    17. Dominic Samoita & Charles Nzila & Poul Alberg Østergaard & Arne Remmen, 2020. "Barriers and Solutions for Increasing the Integration of Solar Photovoltaic in Kenya’s Electricity Mix," Energies, MDPI, vol. 13(20), pages 1-17, October.
    18. Lund, Henrik & Clark II, Woodrow W., 2008. "Sustainable energy and transportation systems introduction and overview," Utilities Policy, Elsevier, vol. 16(2), pages 59-62, June.
    19. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    20. Oropeza-Perez, Ivan & Østergaard, Poul Alberg, 2014. "Potential of natural ventilation in temperate countries – A case study of Denmark," Applied Energy, Elsevier, vol. 114(C), pages 520-530.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:32:y:2007:i:9:p:1731-1744. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.