IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v89y2015icp858-863.html
   My bibliography  Save this article

Analysis of the capillary-force-based μDMFC (micro direct methanol fuel cell) supplied with pure methanol

Author

Listed:
  • Yuan, Zhenyu
  • Yang, Jie
  • Ye, Ning
  • Li, Zipeng
  • Sun, Yuge
  • Shen, Hongyuan

Abstract

In this paper, a capillary-force-based μDMFC(micro direct methanol fuel cell) supplied with pure methanol is presented. A 2D (two-dimensional) steady state model is established to investigate the methanol distribution inside the low concentration chamber with the barrier layer patterned on different diffusion materials. Simulation results illustrate that both methanol diffusion coefficient of the barrier layer and the effective mass transfer area have significant effects on inner methanol distribution. In addition, the effect of capillary force at both inlet and outlet ends of the capillary channel between the pure methanol and the low concentration methanol are simulated. To further prove the feasibility of this supply method, a 3D (three-dimensional) transient model is finally established to monitor the variation of methanol concentration with the change of the operating duration.

Suggested Citation

  • Yuan, Zhenyu & Yang, Jie & Ye, Ning & Li, Zipeng & Sun, Yuge & Shen, Hongyuan, 2015. "Analysis of the capillary-force-based μDMFC (micro direct methanol fuel cell) supplied with pure methanol," Energy, Elsevier, vol. 89(C), pages 858-863.
  • Handle: RePEc:eee:energy:v:89:y:2015:i:c:p:858-863
    DOI: 10.1016/j.energy.2015.06.031
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544215007872
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2015.06.031?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Na, Youngseung & Kwon, Jungmin & Kim, Hyun & Cho, Hyejung & Song, Inseob, 2013. "Characteristics of a direct methanol fuel cell system with the time shared fuel supplying approach," Energy, Elsevier, vol. 50(C), pages 406-411.
    2. Carton, J.G. & Olabi, A.G., 2010. "Design of experiment study of the parameters that affect performance of three flow plate configurations of a proton exchange membrane fuel cell," Energy, Elsevier, vol. 35(7), pages 2796-2806.
    3. Carton, J.G. & Lawlor, V. & Olabi, A.G. & Hochenauer, C. & Zauner, G., 2012. "Water droplet accumulation and motion in PEM (Proton Exchange Membrane) fuel cell mini-channels," Energy, Elsevier, vol. 39(1), pages 63-73.
    4. Tafaoli-Masoule, M. & Bahrami, A. & Elsayed, E.M., 2014. "Optimum design parameters and operating condition for maximum power of a direct methanol fuel cell using analytical model and genetic algorithm," Energy, Elsevier, vol. 70(C), pages 643-652.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuan, Wei & Wang, Aoyu & Ye, Guangzhao & Pan, Baoyou & Tang, Kairui & Chen, Haimu, 2017. "Dynamic relationship between the CO2 gas bubble behavior and the pressure drop characteristics in the anode flow field of an active liquid-feed direct methanol fuel cell," Applied Energy, Elsevier, vol. 188(C), pages 431-443.
    2. Yuan, Wei & Wang, Aoyu & Yan, Zhiguo & Tan, Zhenhao & Tang, Yong & Xia, Hongrong, 2016. "Visualization of two-phase flow and temperature characteristics of an active liquid-feed direct methanol fuel cell with diverse flow fields," Applied Energy, Elsevier, vol. 179(C), pages 85-98.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuan, Zhenyu & Yang, Jie & Li, Xiaoyang & Wang, Shikai, 2016. "The micro-scale analysis of the micro direct methanol fuel cell," Energy, Elsevier, vol. 100(C), pages 10-17.
    2. Yuan, Zhenyu & Yang, Jie & Zhang, Yufeng & Wang, Shikai & Xu, Tingnian, 2015. "Mass transport optimization in the anode diffusion layer of a micro direct methanol fuel cell," Energy, Elsevier, vol. 93(P1), pages 599-605.
    3. Yuan, Zhenyu & Zhang, Manna & Zuo, Kaiyuan & Ren, Yongqiang, 2018. "The effect of gravity on inner transport and cell performance in passive micro direct methanol fuel cell," Energy, Elsevier, vol. 150(C), pages 28-37.
    4. Yuan, Zhenyu & Yang, Jie & Li, Zipeng & Sun, Yuge & Ye, Ning & Shen, Hongyuan, 2015. "Analysis of CO2 transmission in a micro direct methanol fuel cell," Energy, Elsevier, vol. 83(C), pages 496-502.
    5. Rahnavard, Aylin & Rowshanzamir, Soosan & Parnian, Mohammad Javad & Amirkhanlou, Gholam Reza, 2015. "The effect of sulfonated poly (ether ether ketone) as the electrode ionomer for self-humidifying nanocomposite proton exchange membrane fuel cells," Energy, Elsevier, vol. 82(C), pages 746-757.
    6. An, Myung-Gi & Mehmood, Asad & Hwang, Jinyeon & Ha, Heung Yong, 2016. "A novel method of methanol concentration control through feedback of the amplitudes of output voltage fluctuations for direct methanol fuel cells," Energy, Elsevier, vol. 100(C), pages 217-226.
    7. Yuan, Zhenyu & Yang, Jie & Zhang, Yufeng & Zhang, Xiwei, 2015. "The optimization of air-breathing micro direct methanol fuel cell using response surface method," Energy, Elsevier, vol. 80(C), pages 340-349.
    8. Yuan, Zhenyu & Yang, Jie & Zhang, Yufeng, 2015. "A self-adaptive supply method of micro direct methanol fuel cell," Energy, Elsevier, vol. 91(C), pages 1064-1069.
    9. Sayadi, Parvin & Rowshanzamir, Soosan & Parnian, Mohammad Javad, 2016. "Study of hydrogen crossover and proton conductivity of self-humidifying nanocomposite proton exchange membrane based on sulfonated poly (ether ether ketone)," Energy, Elsevier, vol. 94(C), pages 292-303.
    10. Parnian, Mohammad Javad & Rowshanzamir, Soosan & Gashoul, Fatemeh, 2017. "Comprehensive investigation of physicochemical and electrochemical properties of sulfonated poly (ether ether ketone) membranes with different degrees of sulfonation for proton exchange membrane fuel ," Energy, Elsevier, vol. 125(C), pages 614-628.
    11. Okur, Osman & İyigün Karadağ, Çiğdem & Boyacı San, Fatma Gül & Okumuş, Emin & Behmenyar, Gamze, 2013. "Optimization of parameters for hot-pressing manufacture of membrane electrode assembly for PEM (polymer electrolyte membrane fuel cells) fuel cell," Energy, Elsevier, vol. 57(C), pages 574-580.
    12. Abdollahzadeh, M. & Ribeirinha, P. & Boaventura, M. & Mendes, A., 2018. "Three-dimensional modeling of PEMFC with contaminated anode fuel," Energy, Elsevier, vol. 152(C), pages 939-959.
    13. Wang, Junye, 2015. "Theory and practice of flow field designs for fuel cell scaling-up: A critical review," Applied Energy, Elsevier, vol. 157(C), pages 640-663.
    14. Perng, Shiang-Wuu & Wu, Horng-Wen & Shih, Gin-Jang, 2015. "Effect of prominent gas diffusion layer (GDL) on non-isothermal transport characteristics and cell performance of a proton exchange membrane fuel cell (PEMFC)," Energy, Elsevier, vol. 88(C), pages 126-138.
    15. Alipour Najmi, Ali & Rowshanzamir, Soosan & Parnian, Mohammad Javad, 2016. "Investigation of NaOH concentration effect in injected fuel on the performance of passive direct methanol alkaline fuel cell with modified cation exchange membrane," Energy, Elsevier, vol. 94(C), pages 589-599.
    16. Yang, Shipin & Chellali, Ryad & Lu, Xiaohua & Li, Lijuan & Bo, Cuimei, 2016. "Modeling and optimization for proton exchange membrane fuel cell stack using aging and challenging P systems based optimization algorithm," Energy, Elsevier, vol. 109(C), pages 569-577.
    17. Díaz, Manuel Antonio & Iranzo, Alfredo & Rosa, Felipe & Isorna, Fernando & López, Eduardo & Bolivar, Juan Pedro, 2015. "Effect of carbon dioxide on the contamination of low temperature and high temperature PEM (polymer electrolyte membrane) fuel cells. Influence of temperature, relative humidity and analysis of regener," Energy, Elsevier, vol. 90(P1), pages 299-309.
    18. Alipour Najmi, Ali & Rowshanzamir, Soosan & Parnian, Mohammad Javad, 2016. "Study of physicochemical characterization of potassium-doped Nafion117 membrane and performance evaluation of air-breathing fuel cell in different alkali-methanol solutions," Energy, Elsevier, vol. 113(C), pages 1090-1098.
    19. Wang, Luwen & He, Mingyan & Hu, Yue & Zhang, Yufeng & Liu, Xiaowei & Wang, Gaofeng, 2015. "A “4-cell” modular passive DMFC (direct methanol fuel cell) stack for portable applications," Energy, Elsevier, vol. 82(C), pages 229-235.
    20. Oh, Taek Hyun & Jang, Bosun & Kwon, Sejin, 2015. "Estimating the energy density of direct borohydride–hydrogen peroxide fuel cell systems for air-independent propulsion applications," Energy, Elsevier, vol. 90(P1), pages 980-986.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:89:y:2015:i:c:p:858-863. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.