IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v66y2014icp56-62.html
   My bibliography  Save this article

Methanol absorption characteristics for the removal of H2S (hydrogen sulfide), COS (carbonyl sulfide) and CO2 (carbon dioxide) in a pilot-scale biomass-to-liquid process

Author

Listed:
  • Seo, Myung Won
  • Yun, Young Min
  • Cho, Won Chul
  • Ra, Ho Won
  • Yoon, Sang Jun
  • Lee, Jae Goo
  • Kim, Yong Ku
  • Kim, Jae Ho
  • Lee, See Hoon
  • Eom, Won Hyun
  • Lee, Uen Do
  • Lee, Sang Bong

Abstract

The BTL (biomass-to-liquid) process is an attractive process that produces liquid biofuels from biomass. The FT (Fisher–Tropsch) process is used to produce synfuels such as diesel and gasoline from gasified biomass. However, the H2S (hydrogen sulfide), COS (carbonyl sulfide) and CO2 (carbon dioxide) in the syngas that are produced from the biomass gasifiers cause a decrease of the conversion efficiency and deactivates the catalyst that is used in the FT process. To remove the acid gases, a pilot-scale methanol absorption tower producing diesel at a rate of 1 BPD (barrel per day) was developed, and the removal characteristics of the acid gases were determined. A total operation time of 500 h was achieved after several campaigns. The average syngas flow rate at the inlet of methanol absorption tower ranged from 300 to 800 L/min. The methanol absorption tower efficiently removed H2S from 30 ppmV to less than 1 ppmV and COS from 2 ppmV to less than 1 ppmV with a removal of CO2 from 20% to 5%. The outlet gas composition adhered to the guidelines for FT reactors. No remaining sulfurous components were found, and the tar component was analyzed in the spent methanol after long-term operations.

Suggested Citation

  • Seo, Myung Won & Yun, Young Min & Cho, Won Chul & Ra, Ho Won & Yoon, Sang Jun & Lee, Jae Goo & Kim, Yong Ku & Kim, Jae Ho & Lee, See Hoon & Eom, Won Hyun & Lee, Uen Do & Lee, Sang Bong, 2014. "Methanol absorption characteristics for the removal of H2S (hydrogen sulfide), COS (carbonyl sulfide) and CO2 (carbon dioxide) in a pilot-scale biomass-to-liquid process," Energy, Elsevier, vol. 66(C), pages 56-62.
  • Handle: RePEc:eee:energy:v:66:y:2014:i:c:p:56-62
    DOI: 10.1016/j.energy.2013.08.038
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544213007147
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2013.08.038?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Olajire, Abass A., 2010. "CO2 capture and separation technologies for end-of-pipe applications – A review," Energy, Elsevier, vol. 35(6), pages 2610-2628.
    2. Li, Chunshan & Suzuki, Kenzi, 2009. "Tar property, analysis, reforming mechanism and model for biomass gasification--An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(3), pages 594-604, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kim, Young-Doo & Yang, Chang-Won & Kim, Beom-Jong & Moon, Ji-Hong & Jeong, Jae-Yong & Jeong, Soo-Hwa & Lee, See-Hoon & Kim, Jae-Ho & Seo, Myung-Won & Lee, Sang-Bong & Kim, Jae-Kon & Lee, Uen-Do, 2016. "Fischer–tropsch diesel production and evaluation as alternative automotive fuel in pilot-scale integrated biomass-to-liquid process," Applied Energy, Elsevier, vol. 180(C), pages 301-312.
    2. Li, Shenghui & Sun, Xiaojing & Liu, Linlin & Du, Jian, 2023. "A full process optimization of methanol production integrated with co-generation based on the co-gasification of biomass and coal," Energy, Elsevier, vol. 267(C).
    3. Yang, Sheng & Zhang, Lu & Xie, Nan & Gu, Zhaohui & Liu, Zhiqiang, 2021. "Thermodynamic analysis of a semi-lean solution process for energy saving via rectisol wash technology," Energy, Elsevier, vol. 226(C).
    4. Ben Hnich, Khaoula & Khila, Zouhour & Hajjaji, Noureddine, 2020. "Comprehensive study of three configurations coproducing synthetic fuels and electricity from palm residue via Fischer-Tropsch process," Energy, Elsevier, vol. 205(C).
    5. Wafiq, A. & Hanafy, M., 2015. "Feasibility assessment of diesel fuel production in Egypt using coal and biomass: Integrated novel methodology," Energy, Elsevier, vol. 85(C), pages 522-533.
    6. Zhao, Yi & Zhang, Zili & Wang, Hao & Qian, Xinfeng, 2016. "Absorption of carbon dioxide by hydrogen donor under atmospheric pressure," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 84-90.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kobayashi, Makoto & Akiho, Hiroyuki & Nakao, Yoshinobu, 2015. "Performance evaluation of porous sodium aluminate sorbent for halide removal process in oxy-fuel IGCC power generation plant," Energy, Elsevier, vol. 92(P3), pages 320-327.
    2. Ahmed, A.M.A & Salmiaton, A. & Choong, T.S.Y & Wan Azlina, W.A.K.G., 2015. "Review of kinetic and equilibrium concepts for biomass tar modeling by using Aspen Plus," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1623-1644.
    3. Zhao, Zhijun & Xing, Xiao & Tang, Zhigang & Zheng, Yong & Fei, Weiyang & Liang, Xiangfeng & Ataeivarjovi, E. & Guo, Dong, 2018. "Experiment and simulation study of CO2 solubility in dimethyl carbonate, 1-octyl-3-methylimidazolium tetrafluoroborate and their mixtures," Energy, Elsevier, vol. 143(C), pages 35-42.
    4. Narukulla, Ramesh & Chaturvedi, Krishna Raghav & Ojha, Umaprasana & Sharma, Tushar, 2022. "Carbon dioxide capturing evaluation of polyacryloyl hydrazide solutions via rheological analysis for carbon utilization applications," Energy, Elsevier, vol. 241(C).
    5. Du, Shilin & Shu, Rui & Guo, Feiqiang & Mao, Songbo & Bai, Jiaming & Qian, Lin & Xin, Chengyun, 2022. "Porous coal char-based catalyst from coal gangue and lignite with high metal contents in the catalytic cracking of biomass tar," Energy, Elsevier, vol. 249(C).
    6. Martínez-Lera, Susana & Pallarés Ranz, Javier, 2016. "On the development of a wood gasification modelling approach with special emphasis on primary devolatilization and tar formation and destruction phenomena," Energy, Elsevier, vol. 113(C), pages 643-652.
    7. Dindi, Abdallah & Quang, Dang Viet & Abu-Zahra, Mohammad R.M., 2015. "Simultaneous carbon dioxide capture and utilization using thermal desalination reject brine," Applied Energy, Elsevier, vol. 154(C), pages 298-308.
    8. Vega, F. & Baena-Moreno, F.M. & Gallego Fernández, Luz M. & Portillo, E. & Navarrete, B. & Zhang, Zhien, 2020. "Current status of CO2 chemical absorption research applied to CCS: Towards full deployment at industrial scale," Applied Energy, Elsevier, vol. 260(C).
    9. Liu, Zhongzhe & Singer, Simcha & Tong, Yiran & Kimbell, Lee & Anderson, Erik & Hughes, Matthew & Zitomer, Daniel & McNamara, Patrick, 2018. "Characteristics and applications of biochars derived from wastewater solids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 650-664.
    10. Budzianowski, Wojciech Marcin, 2011. "Can ‘negative net CO2 emissions’ from decarbonised biogas-to-electricity contribute to solving Poland’s carbon capture and sequestration dilemmas?," Energy, Elsevier, vol. 36(11), pages 6318-6325.
    11. Zhang, Hanfei & Wang, Ligang & Pérez-Fortes, Mar & Van herle, Jan & Maréchal, François & Desideri, Umberto, 2020. "Techno-economic optimization of biomass-to-methanol with solid-oxide electrolyzer," Applied Energy, Elsevier, vol. 258(C).
    12. Ashouri, Mahyar & Chhokar, Callum & Bahrami, Majid, 2024. "A novel microgroove-based absorber for sorption heat transformation systems: Analytical modeling and experimental investigation," Energy, Elsevier, vol. 307(C).
    13. Chen, Zhaoyang & Fang, Jie & Xu, Chungang & Xia, Zhiming & Yan, Kefeng & Li, Xiaosen, 2020. "Carbon dioxide hydrate separation from Integrated Gasification Combined Cycle (IGCC) syngas by a novel hydrate heat-mass coupling method," Energy, Elsevier, vol. 199(C).
    14. Ronald Ssebadduka & Kyuro Sasaki & Yuichi Sugai, 2020. "An Analysis of the Possible Financial Savings of a Carbon Capture Process through Carbon Dioxide Absorption and Geological Dumping," International Journal of Energy Economics and Policy, Econjournals, vol. 10(4), pages 266-270.
    15. Li, Xiaoqiang & Ding, Yudong & Guo, Liheng & Liao, Qiang & Zhu, Xun & Wang, Hong, 2019. "Non-aqueous energy-efficient absorbents for CO2 capture based on porous silica nanospheres impregnated with amine," Energy, Elsevier, vol. 171(C), pages 109-119.
    16. Nasvi, M.C.M. & Ranjith, P.G. & Sanjayan, J. & Haque, A., 2013. "Sub- and super-critical carbon dioxide permeability of wellbore materials under geological sequestration conditions: An experimental study," Energy, Elsevier, vol. 54(C), pages 231-239.
    17. Adnan, Muflih A. & Hossain, Mohammad M. & Kibria, Md Golam, 2020. "Biomass upgrading to high-value chemicals via gasification and electrolysis: A thermodynamic analysis," Renewable Energy, Elsevier, vol. 162(C), pages 1367-1379.
    18. Chen, Wei-Hsin & Hou, Yu-Lin & Hung, Chen-I., 2012. "A study of influence of acoustic excitation on carbon dioxide capture by a droplet," Energy, Elsevier, vol. 37(1), pages 311-321.
    19. Andrew N. Amenaghawon & Chinedu L. Anyalewechi & Charity O. Okieimen & Heri Septya Kusuma, 2021. "Biomass pyrolysis technologies for value-added products: a state-of-the-art review," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(10), pages 14324-14378, October.
    20. Li, Chunshan & Suzuki, Kenzi, 2010. "Resources, properties and utilization of tar," Resources, Conservation & Recycling, Elsevier, vol. 54(11), pages 905-915.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:66:y:2014:i:c:p:56-62. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.