IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v84y2015icp152-160.html
   My bibliography  Save this article

A Stirling engine for use with lower quality fuels

Author

Listed:
  • Paul, Christopher J.
  • Engeda, Abraham

Abstract

A Stirling engine for use with lower quality fuels was designed. The design is a derivative of the GPU-3 (ground power unit-3), modified to be used with a lower combustion gas temperature (900 °C). It is to be used in a generator set producing 5 kWe. The engine model used is based off of the ideal adiabatic model with decoupled loss mechanisms. Single-cylinder and two-cylinder engines were analyzed using a preheater and CGR (combustion gas recirculation). The analysis shows that the external surface area of the heater plays a very important role in determining the system performance. Maximum system efficiency was found by significantly increasing the surface area at the expense of increased dead volume. A single-cylinder configuration was found to offer the best combination of system efficiency (23.6%) and manufacturing cost.

Suggested Citation

  • Paul, Christopher J. & Engeda, Abraham, 2015. "A Stirling engine for use with lower quality fuels," Energy, Elsevier, vol. 84(C), pages 152-160.
  • Handle: RePEc:eee:energy:v:84:y:2015:i:c:p:152-160
    DOI: 10.1016/j.energy.2015.02.109
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544215002935
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2015.02.109?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Podesser, Erich, 1999. "Electricity production in rural villages with a biomass Stirling engine," Renewable Energy, Elsevier, vol. 16(1), pages 1049-1052.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maraver, Daniel & Sin, Ana & Royo, Javier & Sebastián, Fernando, 2013. "Assessment of CCHP systems based on biomass combustion for small-scale applications through a review of the technology and analysis of energy efficiency parameters," Applied Energy, Elsevier, vol. 102(C), pages 1303-1313.
    2. Ferreira, Ana Cristina & Silva, João & Teixeira, Senhorinha & Teixeira, José Carlos & Nebra, Silvia Azucena, 2020. "Assessment of the Stirling engine performance comparing two renewable energy sources: Solar energy and biomass," Renewable Energy, Elsevier, vol. 154(C), pages 581-597.
    3. Hsu, S.T. & Lin, F.Y. & Chiou, J.S., 2003. "Heat-transfer aspects of Stirling power generation using incinerator waste energy," Renewable Energy, Elsevier, vol. 28(1), pages 59-69.
    4. Franco Cotana & Antonio Messineo & Alessandro Petrozzi & Valentina Coccia & Gianluca Cavalaglio & Andrea Aquino, 2014. "Comparison of ORC Turbine and Stirling Engine to Produce Electricity from Gasified Poultry Waste," Sustainability, MDPI, vol. 6(9), pages 1-16, August.
    5. Schneider, T. & Müller, D. & Karl, J., 2020. "A review of thermochemical biomass conversion combined with Stirling engines for the small-scale cogeneration of heat and power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    6. Bert, Juliette & Chrenko, Daniela & Sophy, Tonino & Le Moyne, Luis & Sirot, Frédéric, 2014. "Simulation, experimental validation and kinematic optimization of a Stirling engine using air and helium," Energy, Elsevier, vol. 78(C), pages 701-712.
    7. Bert, Juliette & Chrenko, Daniela & Sophy, Tonino & Le Moyne, Luis & Sirot, Frédéric, 2012. "Zero dimensional finite-time thermodynamic, three zones numerical model of a generic Stirling and its experimental validation," Renewable Energy, Elsevier, vol. 47(C), pages 167-174.
    8. Granada, E. & Patiño, D. & Collazo, J. & Moran, J.C. & Porteiro, J., 2009. "Available exhaust gas power in different configurations in a pellet stove plant," Renewable Energy, Elsevier, vol. 34(12), pages 2852-2859.
    9. Creyx, M. & Delacourt, E. & Morin, C. & Desmet, B. & Peultier, P., 2013. "Energetic optimization of the performances of a hot air engine for micro-CHP systems working with a Joule or an Ericsson cycle," Energy, Elsevier, vol. 49(C), pages 229-239.
    10. González, Arnau & Riba, Jordi-Roger & Puig, Rita & Navarro, Pere, 2015. "Review of micro- and small-scale technologies to produce electricity and heat from Mediterranean forests׳ wood chips," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 143-155.
    11. Costante Mario Invernizzi & Nadeem Ahmed Sheikh, 2018. "High-Efficiency Small-Scale Combined Heat and Power Organic Binary Rankine Cycles," Energies, MDPI, vol. 11(4), pages 1-15, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:84:y:2015:i:c:p:152-160. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.