IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v111y2016icp803-817.html
   My bibliography  Save this article

Development of optimal integrated renewable energy model with battery storage for a remote Indian area

Author

Listed:
  • Rajanna, S.
  • Saini, R.P.

Abstract

Over the past few years, renewable energy has come to be seen as a possible solution to the energy problems of people. The present work focuses on optimal sizing of an integrated renewable energy system (IRES) considering locally available different renewable energy sources namely micro hydro, solar, wind, biomass and biogas with battery system for electrification of a remote area in Karnataka state in India. Genetic algorithm (GA) has been used to minimize the total net present cost (TNPC) and cost of energy (COE) of the developed IRES model considering the three decision variables-total active sunshine area occupied by the SPV modules, total swept area required to install wind mills and state of charge (SOC) of battery system. Scenario based results of optimal sizes, TNPC and COE have been obtained based on suitable device types and time schedule of biomass generator. Based on optimization results, three IRE scenarios are proposed for the study area. Of the three, scenario-S1 for zone 2 and zone 3. While, scenario-S2 for zone 1 and zone 4 are found to be most feasible for the study area. Further, optimal time schedule, resource combination and device type for all zones have also been determined.

Suggested Citation

  • Rajanna, S. & Saini, R.P., 2016. "Development of optimal integrated renewable energy model with battery storage for a remote Indian area," Energy, Elsevier, vol. 111(C), pages 803-817.
  • Handle: RePEc:eee:energy:v:111:y:2016:i:c:p:803-817
    DOI: 10.1016/j.energy.2016.06.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544216307770
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2016.06.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rajanna, S. & Saini, R.P., 2016. "Modeling of integrated renewable energy system for electrification of a remote area in India," Renewable Energy, Elsevier, vol. 90(C), pages 175-187.
    2. Heydari, Ali & Askarzadeh, Alireza, 2016. "Optimization of a biomass-based photovoltaic power plant for an off-grid application subject to loss of power supply probability concept," Applied Energy, Elsevier, vol. 165(C), pages 601-611.
    3. Yap, Wai Kean & Karri, Vishy, 2015. "An off-grid hybrid PV/diesel model as a planning and design tool, incorporating dynamic and ANN modelling techniques," Renewable Energy, Elsevier, vol. 78(C), pages 42-50.
    4. Gupta, Ajai & Saini, R.P. & Sharma, M.P., 2011. "Modelling of hybrid energy system—Part I: Problem formulation and model development," Renewable Energy, Elsevier, vol. 36(2), pages 459-465.
    5. Diaf, S. & Notton, G. & Belhamel, M. & Haddadi, M. & Louche, A., 2008. "Design and techno-economical optimization for hybrid PV/wind system under various meteorological conditions," Applied Energy, Elsevier, vol. 85(10), pages 968-987, October.
    6. Olatomiwa, Lanre & Mekhilef, Saad & Huda, A.S.N. & Ohunakin, Olayinka S., 2015. "Economic evaluation of hybrid energy systems for rural electrification in six geo-political zones of Nigeria," Renewable Energy, Elsevier, vol. 83(C), pages 435-446.
    7. Upadhyay, Subho & Sharma, M.P., 2016. "Selection of a suitable energy management strategy for a hybrid energy system in a remote rural area of India," Energy, Elsevier, vol. 94(C), pages 352-366.
    8. Chauhan, Anurag & Saini, R.P., 2016. "Discrete harmony search based size optimization of Integrated Renewable Energy System for remote rural areas of Uttarakhand state in India," Renewable Energy, Elsevier, vol. 94(C), pages 587-604.
    9. Kanase-Patil, A.B. & Saini, R.P. & Sharma, M.P., 2011. "Development of IREOM model based on seasonally varying load profile for hilly remote areas of Uttarakhand state in India," Energy, Elsevier, vol. 36(9), pages 5690-5702.
    10. Upadhyay, Subho & Sharma, M.P., 2015. "Development of hybrid energy system with cycle charging strategy using particle swarm optimization for a remote area in India," Renewable Energy, Elsevier, vol. 77(C), pages 586-598.
    11. Joshi, Bharati & Bhatti, T.S. & Bansal, N.K., 1992. "Decentralized energy planning model for a typical village in India," Energy, Elsevier, vol. 17(9), pages 869-876.
    12. Yang, Hongxing & Wei, Zhou & Chengzhi, Lou, 2009. "Optimal design and techno-economic analysis of a hybrid solar-wind power generation system," Applied Energy, Elsevier, vol. 86(2), pages 163-169, February.
    13. Ranaboldo, Matteo & García-Villoria, Alberto & Ferrer-Martí, Laia & Pastor Moreno, Rafael, 2015. "A meta-heuristic method to design off-grid community electrification projects with renewable energies," Energy, Elsevier, vol. 93(P2), pages 2467-2482.
    14. Kaabeche, A. & Belhamel, M. & Ibtiouen, R., 2011. "Sizing optimization of grid-independent hybrid photovoltaic/wind power generation system," Energy, Elsevier, vol. 36(2), pages 1214-1222.
    15. Siddaiah, Rajanna & Saini, R.P., 2016. "A review on planning, configurations, modeling and optimization techniques of hybrid renewable energy systems for off grid applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 376-396.
    16. Gupta, Ajai & Saini, R.P. & Sharma, M.P., 2011. "Modelling of hybrid energy system—Part II: Combined dispatch strategies and solution algorithm," Renewable Energy, Elsevier, vol. 36(2), pages 466-473.
    17. Gupta, Ajai & Saini, R.P. & Sharma, M.P., 2010. "Steady-state modelling of hybrid energy system for off grid electrification of cluster of villages," Renewable Energy, Elsevier, vol. 35(2), pages 520-535.
    18. Chauhan, Anurag & Saini, R.P., 2015. "Renewable energy based off-grid rural electrification in Uttarakhand state of India: Technology options, modelling method, barriers and recommendations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 662-681.
    19. Gupta, Ajai & Saini, R.P. & Sharma, M.P., 2011. "Modelling of hybrid energy system—Part III: Case study with simulation results," Renewable Energy, Elsevier, vol. 36(2), pages 474-481.
    20. Chauhan, Anurag & Saini, R.P., 2016. "Techno-economic optimization based approach for energy management of a stand-alone integrated renewable energy system for remote areas of India," Energy, Elsevier, vol. 94(C), pages 138-156.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ma, Mingtao & Huang, Huijun & Song, Xiaoling & Peña-Mora, Feniosky & Zhang, Zhe & Chen, Jie, 2022. "Optimal sizing and operations of shared energy storage systems in distribution networks: A bi-level programming approach," Applied Energy, Elsevier, vol. 307(C).
    2. Jamila Aourir & Fabrice Locment & Manuela Sechilariu, 2022. "Power and Energy Management of a DC Microgrid for a Renewable Curtailment Case Due to the Integration of a Small-Scale Wind Turbine," Energies, MDPI, vol. 15(9), pages 1-24, May.
    3. Das, Barun K. & Hoque, Najmul & Mandal, Soumya & Pal, Tapas Kumar & Raihan, Md Abu, 2017. "A techno-economic feasibility of a stand-alone hybrid power generation for remote area application in Bangladesh," Energy, Elsevier, vol. 134(C), pages 775-788.
    4. Lari Shanlang Tiewsoh & Jakub Jirásek & Martin Sivek, 2019. "Electricity Generation in India: Present State, Future Outlook and Policy Implications," Energies, MDPI, vol. 12(7), pages 1-14, April.
    5. Patel, Alpesh M. & Singal, Sunil Kumar, 2019. "Optimal component selection of integrated renewable energy system for power generation in stand-alone applications," Energy, Elsevier, vol. 175(C), pages 481-504.
    6. Higinio Sánchez-Sáinz & Carlos-Andrés García-Vázquez & Francisco Llorens Iborra & Luis M. Fernández-Ramírez, 2019. "Methodology for the Optimal Design of a Hybrid Charging Station of Electric and Fuel Cell Vehicles Supplied by Renewable Energies and an Energy Storage System," Sustainability, MDPI, vol. 11(20), pages 1-20, October.
    7. Suresh Vendoti & M. Muralidhar & R. Kiranmayi, 2021. "Techno-economic analysis of off-grid solar/wind/biogas/biomass/fuel cell/battery system for electrification in a cluster of villages by HOMER software," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(1), pages 351-372, January.
    8. Bhattacharjee, Somudeep & Nandi, Champa, 2021. "Design of a voting based smart energy management system of the renewable energy based hybrid energy system for a small community," Energy, Elsevier, vol. 214(C).
    9. Kumar, Jitendra & Suryakiran, B.V. & Verma, Ashu & Bhatti, T.S., 2019. "Analysis of techno-economic viability with demand response strategy of a grid-connected microgrid model for enhanced rural electrification in Uttar Pradesh state, India," Energy, Elsevier, vol. 178(C), pages 176-185.
    10. Talaat, M. & Elkholy, M.H. & Farahat, M.A., 2020. "Operating reserve investigation for the integration of wave, solar and wind energies," Energy, Elsevier, vol. 197(C).
    11. Das, Pronob & Das, Barun K. & Rahman, Mushfiqur & Hassan, Rakibul, 2022. "Evaluating the prospect of utilizing excess energy and creating employments from a hybrid energy system meeting electricity and freshwater demands using multi-objective evolutionary algorithms," Energy, Elsevier, vol. 238(PB).
    12. Alexander Lavrik & Yuri Zhukovskiy & Pavel Tcvetkov, 2021. "Optimizing the Size of Autonomous Hybrid Microgrids with Regard to Load Shifting," Energies, MDPI, vol. 14(16), pages 1-19, August.
    13. Nag, Aditya Kumar & Sarkar, Shibayan, 2021. "Techno-economic analysis of a micro-hydropower plant consists of hydrokinetic turbines arranged in different array formations for rural power supply," Renewable Energy, Elsevier, vol. 179(C), pages 475-487.
    14. Akbas, Beste & Kocaman, Ayse Selin & Nock, Destenie & Trotter, Philipp A., 2022. "Rural electrification: An overview of optimization methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    15. Sadaqat Ali & Zhixue Zheng & Michel Aillerie & Jean-Paul Sawicki & Marie-Cécile Péra & Daniel Hissel, 2021. "A Review of DC Microgrid Energy Management Systems Dedicated to Residential Applications," Energies, MDPI, vol. 14(14), pages 1-26, July.
    16. Araoye, Timothy Oluwaseun & Ashigwuike, Evans Chinemezu & Mbunwe, Muncho Josephine & Bakinson, Oladipupo Idris & Ozue, ThankGod Izuchukwu, 2024. "Techno-economic modeling and optimal sizing of autonomous hybrid microgrid renewable energy system for rural electrification sustainability using HOMER and grasshopper optimization algorithm," Renewable Energy, Elsevier, vol. 229(C).
    17. Islam, Md Shahinur & Akhter, Ruma & Rahman, Mohammad Ashifur, 2018. "A thorough investigation on hybrid application of biomass gasifier and PV resources to meet energy needs for a northern rural off-grid region of Bangladesh: A potential solution to replicate in rural ," Energy, Elsevier, vol. 145(C), pages 338-355.
    18. Nadjemi, O. & Nacer, T. & Hamidat, A. & Salhi, H., 2017. "Optimal hybrid PV/wind energy system sizing: Application of cuckoo search algorithm for Algerian dairy farms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1352-1365.
    19. Rajanna, S. & Saini, R.P., 2016. "Employing demand side management for selection of suitable scenario-wise isolated integrated renewal energy models in an Indian remote rural area," Renewable Energy, Elsevier, vol. 99(C), pages 1161-1180.
    20. Ossai, Chinedu I., 2017. "Optimal renewable energy generation – Approaches for managing ageing assets mechanisms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 269-280.
    21. Rahmat Khezri & Amin Mahmoudi & Hirohisa Aki & S. M. Muyeen, 2021. "Optimal Planning of Remote Area Electricity Supply Systems: Comprehensive Review, Recent Developments and Future Scopes," Energies, MDPI, vol. 14(18), pages 1-29, September.
    22. Amara, Sihem & Toumi, Sana & Salah, Chokri Ben & Saidi, Abdelaziz Salah, 2021. "Improvement of techno-economic optimal sizing of a hybrid off-grid micro-grid system," Energy, Elsevier, vol. 233(C).
    23. Zhang, Weiping & Maleki, Akbar & Rosen, Marc A. & Liu, Jingqing, 2018. "Optimization with a simulated annealing algorithm of a hybrid system for renewable energy including battery and hydrogen storage," Energy, Elsevier, vol. 163(C), pages 191-207.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Siddaiah, Rajanna & Saini, R.P., 2016. "A review on planning, configurations, modeling and optimization techniques of hybrid renewable energy systems for off grid applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 376-396.
    2. Rajanna, S. & Saini, R.P., 2016. "Employing demand side management for selection of suitable scenario-wise isolated integrated renewal energy models in an Indian remote rural area," Renewable Energy, Elsevier, vol. 99(C), pages 1161-1180.
    3. Chauhan, Anurag & Saini, R.P., 2017. "Size optimization and demand response of a stand-alone integrated renewable energy system," Energy, Elsevier, vol. 124(C), pages 59-73.
    4. Chauhan, Anurag & Saini, R.P., 2016. "Discrete harmony search based size optimization of Integrated Renewable Energy System for remote rural areas of Uttarakhand state in India," Renewable Energy, Elsevier, vol. 94(C), pages 587-604.
    5. Weinand, Jann Michael & Scheller, Fabian & McKenna, Russell, 2020. "Reviewing energy system modelling of decentralized energy autonomy," Energy, Elsevier, vol. 203(C).
    6. Rajanna, S. & Saini, R.P., 2016. "Modeling of integrated renewable energy system for electrification of a remote area in India," Renewable Energy, Elsevier, vol. 90(C), pages 175-187.
    7. Patel, Alpesh M. & Singal, Sunil Kumar, 2019. "Optimal component selection of integrated renewable energy system for power generation in stand-alone applications," Energy, Elsevier, vol. 175(C), pages 481-504.
    8. Suresh Vendoti & M. Muralidhar & R. Kiranmayi, 2021. "Techno-economic analysis of off-grid solar/wind/biogas/biomass/fuel cell/battery system for electrification in a cluster of villages by HOMER software," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(1), pages 351-372, January.
    9. Thirunavukkarasu, M. & Sawle, Yashwant & Lala, Himadri, 2023. "A comprehensive review on optimization of hybrid renewable energy systems using various optimization techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
    10. Abhi Chatterjee & Daniel Burmester & Alan Brent & Ramesh Rayudu, 2019. "Research Insights and Knowledge Headways for Developing Remote, Off-Grid Microgrids in Developing Countries," Energies, MDPI, vol. 12(10), pages 1-19, May.
    11. Araoye, Timothy Oluwaseun & Ashigwuike, Evans Chinemezu & Mbunwe, Muncho Josephine & Bakinson, Oladipupo Idris & Ozue, ThankGod Izuchukwu, 2024. "Techno-economic modeling and optimal sizing of autonomous hybrid microgrid renewable energy system for rural electrification sustainability using HOMER and grasshopper optimization algorithm," Renewable Energy, Elsevier, vol. 229(C).
    12. Sawle, Yashwant & Gupta, S.C. & Bohre, Aashish Kumar, 2018. "Review of hybrid renewable energy systems with comparative analysis of off-grid hybrid system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2217-2235.
    13. Mandelli, Stefano & Barbieri, Jacopo & Mereu, Riccardo & Colombo, Emanuela, 2016. "Off-grid systems for rural electrification in developing countries: Definitions, classification and a comprehensive literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1621-1646.
    14. Jann Michael Weinand & Maximilian Hoffmann & Jan Gopfert & Tom Terlouw & Julian Schonau & Patrick Kuckertz & Russell McKenna & Leander Kotzur & Jochen Lin{ss}en & Detlef Stolten, 2022. "Global LCOEs of decentralized off-grid renewable energy systems," Papers 2212.12742, arXiv.org, revised Mar 2023.
    15. Bhatt, Ankit & Sharma, M.P. & Saini, R.P., 2016. "Feasibility and sensitivity analysis of an off-grid micro hydro–photovoltaic–biomass and biogas–diesel–battery hybrid energy system for a remote area in Uttarakhand state, India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 53-69.
    16. Upadhyay, Subho & Sharma, M.P., 2016. "Selection of a suitable energy management strategy for a hybrid energy system in a remote rural area of India," Energy, Elsevier, vol. 94(C), pages 352-366.
    17. Parihar, Amit Kumar Singh & Sethi, Virendra & Banerjee, Rangan, 2019. "Sizing of biomass based distributed hybrid power generation systems in India," Renewable Energy, Elsevier, vol. 134(C), pages 1400-1422.
    18. Ho, W.S. & Hashim, H. & Lim, J.S., 2014. "Integrated biomass and solar town concept for a smart eco-village in Iskandar Malaysia (IM)," Renewable Energy, Elsevier, vol. 69(C), pages 190-201.
    19. Edwin, M. & Joseph Sekhar, S., 2018. "Techno- Economic evaluation of milk chilling unit retrofitted with hybrid renewable energy system in coastal province," Energy, Elsevier, vol. 151(C), pages 66-78.
    20. Theo, Wai Lip & Lim, Jeng Shiun & Ho, Wai Shin & Hashim, Haslenda & Lee, Chew Tin, 2017. "Review of distributed generation (DG) system planning and optimisation techniques: Comparison of numerical and mathematical modelling methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 531-573.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:111:y:2016:i:c:p:803-817. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.