IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v179y2019icp989-1003.html
   My bibliography  Save this article

P-graph-based multi-objective risk analysis and redundancy allocation in safety-critical energy systems

Author

Listed:
  • Süle, Zoltán
  • Baumgartner, János
  • Dörgő, Gyula
  • Abonyi, János

Abstract

As most of the energy production and transformation processes are safety-critical, it is vital to develop tools that support the analysis and minimisation of their reliability-related risks. The resultant optimisation problem should reflect the structure of the process which requires the utilisation of flexible and problem-relevant models. This paper highlights that P-graphs extended by logical condition units can be transformed into reliability block diagrams, and based on the cut and path sets of the graph a polynomial risk model can be extracted which opens up new opportunities for the definition optimisation problems related to reliability redundancy allocation. A novel multi-objective optimisation based method has been developed to evaluate the criticality of the units and subsystems. The applicability of the proposed method is demonstrated using a real-life case study related to a reforming reaction system. The results highlight that P-graphs can serve as an interface between process flow diagrams and polynomial risk models and the developed tool can improve the reliability of energy systems in retrofitting projects.

Suggested Citation

  • Süle, Zoltán & Baumgartner, János & Dörgő, Gyula & Abonyi, János, 2019. "P-graph-based multi-objective risk analysis and redundancy allocation in safety-critical energy systems," Energy, Elsevier, vol. 179(C), pages 989-1003.
  • Handle: RePEc:eee:energy:v:179:y:2019:i:c:p:989-1003
    DOI: 10.1016/j.energy.2019.05.043
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219309065
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.05.043?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Voll, Philip & Lampe, Matthias & Wrobel, Gregor & Bardow, André, 2012. "Superstructure-free synthesis and optimization of distributed industrial energy supply systems," Energy, Elsevier, vol. 45(1), pages 424-435.
    2. Dolatshahi-Zand, Ali & Khalili-Damghani, Kaveh, 2015. "Design of SCADA water resource management control center by a bi-objective redundancy allocation problem and particle swarm optimization," Reliability Engineering and System Safety, Elsevier, vol. 133(C), pages 11-21.
    3. de Paula, Cassio Pereira & Visnadi, Lais Bittencourt & de Castro, Helio Fiori, 2019. "Multi-objective optimization in redundant system considering load sharing," Reliability Engineering and System Safety, Elsevier, vol. 181(C), pages 17-27.
    4. Peiravi, Abdossaber & Karbasian, Mahdi & Ardakan, Mostafa Abouei & Coit, David W., 2019. "Reliability optimization of series-parallel systems with K-mixed redundancy strategy," Reliability Engineering and System Safety, Elsevier, vol. 183(C), pages 17-28.
    5. Chong, Fah Keen & Lawrence‎, Kelvin Kuhanraj & Lim, Pek Peng & Poon, Marcus Chinn Yoong & Foo, Dominic Chwan Yee & Lam, Hon Loong & Tan, Raymond R., 2014. "Planning of carbon capture storage deployment using process graph approach," Energy, Elsevier, vol. 76(C), pages 641-651.
    6. Andiappan, Viknesh & Ng, Denny K.S. & Tan, Raymond R., 2017. "Design Operability and Retrofit Analysis (DORA) framework for energy systems," Energy, Elsevier, vol. 134(C), pages 1038-1052.
    7. Frangopoulos, Christos A., 2018. "Recent developments and trends in optimization of energy systems," Energy, Elsevier, vol. 164(C), pages 1011-1020.
    8. Zhu, Lei & Fan, Ying, 2013. "Modelling the investment in carbon capture retrofits of pulverized coal-fired plants," Energy, Elsevier, vol. 57(C), pages 66-75.
    9. Van Wagener, David H. & Liebenthal, Ulrich & Plaza, Jorge M. & Kather, Alfons & Rochelle, Gary T., 2014. "Maximizing coal-fired power plant efficiency with integration of amine-based CO2 capture in greenfield and retrofit scenarios," Energy, Elsevier, vol. 72(C), pages 824-831.
    10. Aviso, Kathleen B. & Tan, Raymond R., 2018. "Fuzzy P-graph for optimal synthesis of cogeneration and trigeneration systems," Energy, Elsevier, vol. 154(C), pages 258-268.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. András Éles & István Heckl & Heriberto Cabezas, 2021. "Modeling technique in the P-Graph framework for operating units with flexible input ratios," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 29(2), pages 463-489, June.
    2. Cabral, Charlette & Andiappan, Viknesh & Aviso, Kathleen & Tan, Raymond, 2021. "Equipment size selection for optimizing polygeneration systems with reliability aspects," Energy, Elsevier, vol. 234(C).
    3. Yeo, Lip Siang & Tiang, Celine Wei Ping & Teng, Sin Yong & Ng, Wendy Pei Qin & Lim, Chun Hsion & Leong, Wei Dong & Lam, Hon Loong & Sunarso, Jaka & How, Bing Shen, 2023. "Rethinking circularity with Re-refineries and supply chains reintegration via multi-objective pareto graph theoretical approach," Energy, Elsevier, vol. 279(C).
    4. Botond Bertók & Tibor Csendes & Gábor Galambos, 2021. "Operations research in Hungary: VOCAL 2018," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 29(2), pages 379-386, June.
    5. Mimica, Marko & Giménez de Urtasun, Laura & Krajačić, Goran, 2022. "A robust risk assessment method for energy planning scenarios on smart islands under the demand uncertainty," Energy, Elsevier, vol. 240(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ardakan, Mostafa Abouei & Amini, Hanieh & Juybari, Mohammad N., 2022. "Prescheduled switching time: A new strategy for systems with standby components," Reliability Engineering and System Safety, Elsevier, vol. 218(PB).
    2. Sergio Rech, 2019. "Smart Energy Systems: Guidelines for Modelling and Optimizing a Fleet of Units of Different Configurations," Energies, MDPI, vol. 12(7), pages 1-36, April.
    3. Dobani, Ehsan Ramezani & Ardakan, Mostafa Abouei & Davari-Ardakani, Hamed & Juybari, Mohammad N., 2019. "RRAP-CM: A new reliability-redundancy allocation problem with heterogeneous components," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    4. Du, Mengyu & Li, Yan-Fu, 2020. "An investigation of new local search strategies in memetic algorithm for redundancy allocation in multi-state series-parallel systems," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    5. Vahid Baradaran & Amir Hossein Hosseinian, 2020. "A bi-objective model for redundancy allocation problem in designing server farms: mathematical formulation and solution approaches," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 11(5), pages 935-952, October.
    6. Ardakan, Mostafa Abouei & Talkhabi, Sajjad & Juybari, Mohammad N., 2022. "Optimal activation order vs. redundancy strategies in reliability optimization problems," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    7. Zaretalab, Arash & Sharifi, Mani & Guilani, Pedram Pourkarim & Taghipour, Sharareh & Niaki, Seyed Taghi Akhavan, 2022. "A multi-objective model for optimizing the redundancy allocation, component supplier selection, and reliable activities for multi-state systems," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    8. Isogai, Hirotaka & Nakagaki, Takao, 2024. "Power-to-heat amine-based post-combustion CO2 capture system with solvent storage utilizing fluctuating electricity prices," Applied Energy, Elsevier, vol. 368(C).
    9. Al-Falahi, Monaaf D.A. & Jayasinghe, Shantha D.G. & Enshaei, Hossein, 2019. "Hybrid algorithm for optimal operation of hybrid energy systems in electric ferries," Energy, Elsevier, vol. 187(C).
    10. Linnerud, Kristin & Andersson, Ane Marte & Fleten, Stein-Erik, 2014. "Investment timing under uncertain renewable energy policy: An empirical study of small hydropower projects," Energy, Elsevier, vol. 78(C), pages 154-164.
    11. Zhang, Xinhua & Yang, Hongming & Yu, Qian & Qiu, Jing & Zhang, Yongxi, 2018. "Analysis of carbon-abatement investment for thermal power market in carbon-dispatching mode and policy recommendations," Energy, Elsevier, vol. 149(C), pages 954-966.
    12. Zhang, M.M. & Wang, Qunwei & Zhou, Dequn & Ding, H., 2019. "Evaluating uncertain investment decisions in low-carbon transition toward renewable energy," Applied Energy, Elsevier, vol. 240(C), pages 1049-1060.
    13. Luca Urbanucci & Francesco D’Ettorre & Daniele Testi, 2019. "A Comprehensive Methodology for the Integrated Optimal Sizing and Operation of Cogeneration Systems with Thermal Energy Storage," Energies, MDPI, vol. 12(5), pages 1-17, March.
    14. Guo, Xiaolu & Yan, Xingqing & Zheng, Yangguang & Yu, Jianliang & Zhang, Yongchun & Chen, Shaoyun & Chen, Lin & Mahgerefteh, Haroun & Martynov, Sergey & Collard, Alexander & Brown, Solomon, 2017. "Under-expanded jets and dispersion in high pressure CO2 releases from an industrial scale pipeline," Energy, Elsevier, vol. 119(C), pages 53-66.
    15. Herui Cui & Tian Zhao & Ruirui Wu, 2018. "An Investment Feasibility Analysis of CCS Retrofit Based on a Two-Stage Compound Real Options Model," Energies, MDPI, vol. 11(7), pages 1-19, July.
    16. Shen, Feifei & Zhao, Liang & Du, Wenli & Zhong, Weimin & Qian, Feng, 2020. "Large-scale industrial energy systems optimization under uncertainty: A data-driven robust optimization approach," Applied Energy, Elsevier, vol. 259(C).
    17. Halmschlager, Daniel & Beck, Anton & Knöttner, Sophie & Koller, Martin & Hofmann, René, 2022. "Combined optimization for retrofitting of heat recovery and thermal energy supply in industrial systems," Applied Energy, Elsevier, vol. 305(C).
    18. Capuder, Tomislav & Mancarella, Pierluigi, 2014. "Techno-economic and environmental modelling and optimization of flexible distributed multi-generation options," Energy, Elsevier, vol. 71(C), pages 516-533.
    19. Chen, Huadong & Wang, Can & Cai, Wenjia & Wang, Jianhui, 2018. "Simulating the impact of investment preference on low-carbon transition in power sector," Applied Energy, Elsevier, vol. 217(C), pages 440-455.
    20. Guo, Xiaolu & Yan, Xingqing & Yu, Jianliang & Yang, Yang & Zhang, Yongchun & Chen, Shaoyun & Mahgerefteh, Haroun & Martynov, Sergey & Collard, Alexander, 2017. "Pressure responses and phase transitions during the release of high pressure CO2 from a large-scale pipeline," Energy, Elsevier, vol. 118(C), pages 1066-1078.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:179:y:2019:i:c:p:989-1003. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.