Improving vortex tube performance based on vortex generator design
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2014.05.071
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Im, S.Y. & Yu, S.S., 2012. "Effects of geometric parameters on the separated air flow temperature of a vortex tube for design optimization," Energy, Elsevier, vol. 37(1), pages 154-160.
- Lewins, Jeffery & Bejan, Adrian, 1999. "Vortex tube optimization theory," Energy, Elsevier, vol. 24(11), pages 931-943.
- Eiamsa-ard, Smith & Promvonge, Pongjet, 2008. "Review of Ranque-Hilsch effects in vortex tubes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(7), pages 1822-1842, September.
- Kabeel, A.E. & Sultan, G.I. & Zyada, Z.A. & El-Hadary, M.I., 2010. "Performance study of spot cooling of tractor cabinet," Energy, Elsevier, vol. 35(4), pages 1679-1687.
- Aydın, Orhan & Baki, Muzaffer, 2006. "An experimental study on the design parameters of a counterflow vortex tube," Energy, Elsevier, vol. 31(14), pages 2763-2772.
- Rafiee, Seyed Ehsan & Rahimi, Masoud, 2013. "Experimental study and three-dimensional (3D) computational fluid dynamics (CFD) analysis on the effect of the convergence ratio, pressure inlet and number of nozzle intake on vortex tube performance–," Energy, Elsevier, vol. 63(C), pages 195-204.
- Wen, Chuang & Cao, Xuewen & Yang, Yan & Li, Wenlong, 2012. "Numerical simulation of natural gas flows in diffusers for supersonic separators," Energy, Elsevier, vol. 37(1), pages 195-200.
- Saidi, M.H. & Allaf Yazdi, M.R., 1999. "Exergy model of a vortex tube system with experimental results," Energy, Elsevier, vol. 24(7), pages 625-632.
- Berber, Adnan & Dincer, Kevser & Yılmaz, Yusuf & Ozen, Dilek Nur, 2013. "Rule-based Mamdani-type fuzzy modeling of heating and cooling performances of counter-flow Ranque–Hilsch vortex tubes with different geometric construction for steel," Energy, Elsevier, vol. 51(C), pages 297-304.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Wang, Haipeng & Zhang, Bo & Qiu, Qinggang & Xu, Xiang, 2017. "Flow control on the NREL S809 wind turbine airfoil using vortex generators," Energy, Elsevier, vol. 118(C), pages 1210-1221.
- Manimaran, R., 2017. "Computational analysis of flow features and energy separation in a counter-flow vortex tube based on number of inlets," Energy, Elsevier, vol. 123(C), pages 564-578.
- Manimaran, R., 2016. "Computational analysis of energy separation in a counter-flow vortex tube based on inlet shape and aspect ratio," Energy, Elsevier, vol. 107(C), pages 17-28.
- Fang, Lide & Liu, Yueyuan & Zheng, Meng & Liu, Xu & Lan, Kang & Wang, Fan & Yan, Xiaoli, 2023. "A new type of velocity averaging tube vortex flow sensor and measurement model of mass flow rate," Energy, Elsevier, vol. 283(C).
- Ambedkar, P. & Dutta, T., 2023. "CFD simulation and thermodynamic analysis of energy separation in vortex tube using different inert gases at different inlet pressures and cold mass fractions," Energy, Elsevier, vol. 263(PB).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Subudhi, Sudhakar & Sen, Mihir, 2015. "Review of Ranque–Hilsch vortex tube experiments using air," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 172-178.
- Rafiee, Seyed Ehsan & Rahimi, Masoud, 2013. "Experimental study and three-dimensional (3D) computational fluid dynamics (CFD) analysis on the effect of the convergence ratio, pressure inlet and number of nozzle intake on vortex tube performance–," Energy, Elsevier, vol. 63(C), pages 195-204.
- Manimaran, R., 2016. "Computational analysis of energy separation in a counter-flow vortex tube based on inlet shape and aspect ratio," Energy, Elsevier, vol. 107(C), pages 17-28.
- Thakare, Hitesh R. & Monde, Aniket & Parekh, Ashok D., 2015. "Experimental, computational and optimization studies of temperature separation and flow physics of vortex tube: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1043-1071.
- Manimaran, R., 2017. "Computational analysis of flow features and energy separation in a counter-flow vortex tube based on number of inlets," Energy, Elsevier, vol. 123(C), pages 564-578.
- Kandil, Hamdy A. & Abdelghany, Seif T., 2015. "Computational investigation of different effects on the performance of the Ranque–Hilsch vortex tube," Energy, Elsevier, vol. 84(C), pages 207-218.
- Zhang, Bo & Guo, Xiangji, 2018. "Prospective applications of Ranque–Hilsch vortex tubes to sustainable energy utilization and energy efficiency improvement with energy and mass separation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 89(C), pages 135-150.
- Zhang, Bo & Guo, Yaning & Li, Nian & He, Peng & Guo, Xiangji, 2023. "Experimental study of gas–liquid behavior in three-flow vortex tube with sintered metal porous material as the drain part," Energy, Elsevier, vol. 263(PA).
- Eiamsa-ard, Smith & Promvonge, Pongjet, 2008. "Review of Ranque-Hilsch effects in vortex tubes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(7), pages 1822-1842, September.
- Artem Belousov & Vladimir Lushpeev & Anton Sokolov & Radel Sultanbekov & Yan Tyan & Egor Ovchinnikov & Aleksei Shvets & Vitaliy Bushuev & Shamil Islamov, 2024. "Hartmann–Sprenger Energy Separation Effect for the Quasi-Isothermal Pressure Reduction of Natural Gas: Feasibility Analysis and Numerical Simulation," Energies, MDPI, vol. 17(9), pages 1-25, April.
- Bose, Probir Kumar & Deb, Madhujit & Banerjee, Rahul & Majumder, Arindam, 2013. "Multi objective optimization of performance parameters of a single cylinder diesel engine running with hydrogen using a Taguchi-fuzzy based approach," Energy, Elsevier, vol. 63(C), pages 375-386.
- W. Rattanongphisat & S. B. Riffat & G. Gan, 2008. "Thermal separation flow characteristic in a vortex tube: CFD model," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 3(4), pages 282-295, October.
- Ambedkar, P. & Dutta, T., 2023. "CFD simulation and thermodynamic analysis of energy separation in vortex tube using different inert gases at different inlet pressures and cold mass fractions," Energy, Elsevier, vol. 263(PB).
- Jaime Guerrero & Antonio Alcaide-Moreno & Ana González-Espinosa & Roberto Arévalo & Lev Tunkel & María Dolores Storch de Gracia & Eduardo García-Rosales, 2023. "Reducing Energy Consumption and CO 2 Emissions in Natural Gas Preheating Stations Using Vortex Tubes," Energies, MDPI, vol. 16(13), pages 1-20, June.
- Yang, Yan & Wen, Chuang & Wang, Shuli & Feng, Yuqing, 2014. "Theoretical and numerical analysis on pressure recovery of supersonic separators for natural gas dehydration," Applied Energy, Elsevier, vol. 132(C), pages 248-253.
- Konstantin I. Matveev & Jacob Leachman, 2021. "Numerical Simulations of Cryogenic Hydrogen Cooling in Vortex Tubes with Smooth Transitions," Energies, MDPI, vol. 14(5), pages 1-13, March.
- Mohamed I. Elhadary & Abdullah Mossa Y. Alzahrani & Reda M. H. Aly & Bahaa Elboshy, 2021. "A Comparative Study for Forced Ventilation Systems in Industrial Buildings to Improve the Workers’ Thermal Comfort," Sustainability, MDPI, vol. 13(18), pages 1-14, September.
- Shooshtari, S.H. Rajaee & Shahsavand, A., 2017. "Maximization of energy recovery inside supersonic separator in the presence of condensation and normal shock wave," Energy, Elsevier, vol. 120(C), pages 153-163.
- Zhang, Zhifei & Li, Tie & Shi, Weiquan, 2019. "Ambient Tracer-LIF for 2-D quantitative measurement of fuel concentration in gas jets," Energy, Elsevier, vol. 171(C), pages 372-384.
- Thakare, Hitesh R. & Parekh, A.D., 2015. "Computational analysis of energy separation in counter—flow vortex tube," Energy, Elsevier, vol. 85(C), pages 62-77.
More about this item
Keywords
Vortex tube; Vortex generator; Cold orifice angle; Cold orifice diameter; Nozzle area; Efficiency;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:72:y:2014:i:c:p:492-500. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.