IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v263y2023ipbs0360544222026834.html
   My bibliography  Save this article

CFD simulation and thermodynamic analysis of energy separation in vortex tube using different inert gases at different inlet pressures and cold mass fractions

Author

Listed:
  • Ambedkar, P.
  • Dutta, T.

Abstract

In this paper, extensive three-dimensional CFD simulations of vortex tube (VT) are conducted with five inert gases, namely helium, neon, argon, nitrogen, and carbon dioxide, to understand the influence of different properties of these gases on the flow phenomena and thermal performance of VT at wide range of cold mass fractions and inlet pressures. Molecular weights and specific heat ratios of the gases are found to significantly influence the values of velocity and temperature distributions inside VT, although the nature of the flow remains unaffected for different gases. Both hot and cold temperature separations increase for higher specific heat ratio of the gas, while heating and cooling powers are more for higher constant pressure specific heat and higher temperature separations. Coefficient of performance of VT vary significantly with cold mass fraction and inlet pressure, but remain majorly unaffected for different gases. Exergy analysis shows that at VT outlets, physical exergy is very much smaller than kinetic exergy. Outlet kinetic exergy is lost to the surroundings, without producing any desired cooling or heating effect. Therefore, physical exergy efficiency of VT, which is limited to 5% only, is of more practical value.

Suggested Citation

  • Ambedkar, P. & Dutta, T., 2023. "CFD simulation and thermodynamic analysis of energy separation in vortex tube using different inert gases at different inlet pressures and cold mass fractions," Energy, Elsevier, vol. 263(PB).
  • Handle: RePEc:eee:energy:v:263:y:2023:i:pb:s0360544222026834
    DOI: 10.1016/j.energy.2022.125797
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222026834
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.125797?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Aydın, Orhan & Baki, Muzaffer, 2006. "An experimental study on the design parameters of a counterflow vortex tube," Energy, Elsevier, vol. 31(14), pages 2763-2772.
    2. Thakare, Hitesh R. & Parekh, A.D., 2015. "Computational analysis of energy separation in counter—flow vortex tube," Energy, Elsevier, vol. 85(C), pages 62-77.
    3. Manimaran, R., 2016. "Computational analysis of energy separation in a counter-flow vortex tube based on inlet shape and aspect ratio," Energy, Elsevier, vol. 107(C), pages 17-28.
    4. Liang, Fachun & Wang, Chi & Tang, Guoxiang, 2020. "Experimental investigation on gas hydrate recovery using temperature separation mechanism of vortex tube," Energy, Elsevier, vol. 212(C).
    5. Kandil, Hamdy A. & Abdelghany, Seif T., 2015. "Computational investigation of different effects on the performance of the Ranque–Hilsch vortex tube," Energy, Elsevier, vol. 84(C), pages 207-218.
    6. Farzaneh-Gord, Mahmood & Sadi, Meisam, 2014. "Improving vortex tube performance based on vortex generator design," Energy, Elsevier, vol. 72(C), pages 492-500.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bruno Augusto Cabral Roque & Pedro Pinto Ferreira Brasileiro & Yana Batista Brandão & Hilario Jorge Bezerra de Lima Filho & Attilio Converti & Bahar Aliakbarian & Mohand Benachour & Leonie Asfora Saru, 2023. "Simulation Study of Hydrodynamic Conditions in Reaction Cell for Cement Biomineralization Using Factorial Design and Computational Fluid Dynamics: Prospects for Increased Useful Life of Concrete Struc," Energies, MDPI, vol. 16(8), pages 1-27, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Manimaran, R., 2017. "Computational analysis of flow features and energy separation in a counter-flow vortex tube based on number of inlets," Energy, Elsevier, vol. 123(C), pages 564-578.
    2. Manimaran, R., 2016. "Computational analysis of energy separation in a counter-flow vortex tube based on inlet shape and aspect ratio," Energy, Elsevier, vol. 107(C), pages 17-28.
    3. Zhang, Bo & Guo, Xiangji, 2018. "Prospective applications of Ranque–Hilsch vortex tubes to sustainable energy utilization and energy efficiency improvement with energy and mass separation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 89(C), pages 135-150.
    4. Zhang, Bo & Guo, Yaning & Li, Nian & He, Peng & Guo, Xiangji, 2023. "Experimental study of gas–liquid behavior in three-flow vortex tube with sintered metal porous material as the drain part," Energy, Elsevier, vol. 263(PA).
    5. Subudhi, Sudhakar & Sen, Mihir, 2015. "Review of Ranque–Hilsch vortex tube experiments using air," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 172-178.
    6. Rafiee, Seyed Ehsan & Rahimi, Masoud, 2013. "Experimental study and three-dimensional (3D) computational fluid dynamics (CFD) analysis on the effect of the convergence ratio, pressure inlet and number of nozzle intake on vortex tube performance–," Energy, Elsevier, vol. 63(C), pages 195-204.
    7. Rogovyi, A., 2018. "Energy performances of the vortex chamber supercharger," Energy, Elsevier, vol. 163(C), pages 52-60.
    8. Fang, Lide & Liu, Yueyuan & Zheng, Meng & Liu, Xu & Lan, Kang & Wang, Fan & Yan, Xiaoli, 2023. "A new type of velocity averaging tube vortex flow sensor and measurement model of mass flow rate," Energy, Elsevier, vol. 283(C).
    9. Oberti, Raphaël & Lagrandeur, Junior & Poncet, Sébastien, 2023. "Numerical benchmark of a Ranque–Hilsch vortex tube working with subcritical carbon dioxide," Energy, Elsevier, vol. 263(PC).
    10. Yefeng Liu & Ying Sun & Danping Tang, 2019. "Analysis of a CO 2 Transcritical Refrigeration Cycle with a Vortex Tube Expansion," Sustainability, MDPI, vol. 11(7), pages 1-14, April.
    11. Eiamsa-ard, Smith & Promvonge, Pongjet, 2008. "Review of Ranque-Hilsch effects in vortex tubes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(7), pages 1822-1842, September.
    12. Farzaneh-Gord, Mahmood & Sadi, Meisam, 2014. "Improving vortex tube performance based on vortex generator design," Energy, Elsevier, vol. 72(C), pages 492-500.
    13. Thakare, Hitesh R. & Parekh, A.D., 2015. "Computational analysis of energy separation in counter—flow vortex tube," Energy, Elsevier, vol. 85(C), pages 62-77.
    14. Wang, Haipeng & Zhang, Bo & Qiu, Qinggang & Xu, Xiang, 2017. "Flow control on the NREL S809 wind turbine airfoil using vortex generators," Energy, Elsevier, vol. 118(C), pages 1210-1221.
    15. Wang, Shiwei & Wang, Chao & Ding, Hongbing & Zhang, Yu & Dong, Yuanyuan & Wen, Chuang, 2023. "Joule-Thomson effect and flow behavior for energy-efficient dehydration of high-pressure natural gas in supersonic separator," Energy, Elsevier, vol. 279(C).
    16. Im, S.Y. & Yu, S.S., 2012. "Effects of geometric parameters on the separated air flow temperature of a vortex tube for design optimization," Energy, Elsevier, vol. 37(1), pages 154-160.
    17. Kandil, Hamdy A. & Abdelghany, Seif T., 2015. "Computational investigation of different effects on the performance of the Ranque–Hilsch vortex tube," Energy, Elsevier, vol. 84(C), pages 207-218.
    18. Berber, Adnan & Dincer, Kevser & Yılmaz, Yusuf & Ozen, Dilek Nur, 2013. "Rule-based Mamdani-type fuzzy modeling of heating and cooling performances of counter-flow Ranque–Hilsch vortex tubes with different geometric construction for steel," Energy, Elsevier, vol. 51(C), pages 297-304.
    19. Rogovyi, Andrii & Korohodskyi, Vladimir & Medvediev, Yevhen, 2021. "Influence of Bingham fluid viscosity on energy performances of a vortex chamber pump," Energy, Elsevier, vol. 218(C).
    20. Wei, Rupeng & Xia, Yongqiang & Qu, Aoxing & Fan, Qi & Li, Qingping & Lv, Xin & Leng, Shudong & Li, Xingbo & Zhang, Lunxiang & Zhang, Yi & Zhao, Jiafei & Yang, Lei & Sun, Xiang & Song, Yongchen, 2024. "Sustained production of gas hydrate through hybrid depressurization scheme with enhanced energy efficiency and mitigated ice blockage," Energy, Elsevier, vol. 289(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:263:y:2023:i:pb:s0360544222026834. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.