IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v12y2008i7p1822-1842.html
   My bibliography  Save this article

Review of Ranque-Hilsch effects in vortex tubes

Author

Listed:
  • Eiamsa-ard, Smith
  • Promvonge, Pongjet

Abstract

The vortex tube or Ranque-Hilsch vortex tube is a device that enables the separation of hot and cold air as compressed air flows tangentially into the vortex chamber through inlet nozzles. Separating cold and hot airs by using the principles of the vortex tube can be applied to industrial applications such as cooling equipment in CNC machines, refrigerators, cooling suits, heating processes, etc. The vortex tube is well-suited for these applications because it is simple, compact, light, quiet, and does not use Freon or other refrigerants (CFCs/HCFCs). It has no moving parts and does not break or wear and therefore requires little maintenance. Thus, this paper presents an overview of the phenomena occurring inside the vortex tube during the temperature/energy separation on both the counter flow and parallel flow types. The paper also reviews the experiments and the calculations presented in previous studies on temperature separation in the vortex tube. The experiment consisted of two important parameters, the first is the geometrical characteristics of the vortex tube (for example, the diameter and length of the hot and cold tubes, the diameter of the cold orifice, shape of the hot (divergent) tube, number of inlet nozzles, shape of the inlet nozzles, and shape of the cone valve. The second is focused on the thermo-physical parameters such as inlet gas pressure, cold mass fraction, moisture of inlet gas, and type of gas (air, oxygen, helium, and methane). For each parameter, the temperature separation mechanism and the flow-field inside the vortex tubes is explored by measuring the pressure, velocity, and temperature fields. The computation review is concentrated on the quantitative, theoretical, analytical, and numerical (finite volume method) aspects of the study. Although many experimental and numerical studies on the vortex tubes have been made, the physical behaviour of the flow is not fully understood due to its complexity and the lack of consistency in the experimental findings. Furthermore, several different hypotheses based on experimental, analytical, and numerical studies have been put forward to describe the thermal separation phenomenon.

Suggested Citation

  • Eiamsa-ard, Smith & Promvonge, Pongjet, 2008. "Review of Ranque-Hilsch effects in vortex tubes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(7), pages 1822-1842, September.
  • Handle: RePEc:eee:rensus:v:12:y:2008:i:7:p:1822-1842
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364-0321(07)00050-0
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lewins, Jeffery & Bejan, Adrian, 1999. "Vortex tube optimization theory," Energy, Elsevier, vol. 24(11), pages 931-943.
    2. Aydın, Orhan & Baki, Muzaffer, 2006. "An experimental study on the design parameters of a counterflow vortex tube," Energy, Elsevier, vol. 31(14), pages 2763-2772.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Konstantin I. Matveev & Jacob Leachman, 2021. "Numerical Simulations of Cryogenic Hydrogen Cooling in Vortex Tubes with Smooth Transitions," Energies, MDPI, vol. 14(5), pages 1-13, March.
    2. Thakare, Hitesh R. & Monde, Aniket & Parekh, Ashok D., 2015. "Experimental, computational and optimization studies of temperature separation and flow physics of vortex tube: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1043-1071.
    3. Zhang, Bo & Guo, Xiangji, 2018. "Prospective applications of Ranque–Hilsch vortex tubes to sustainable energy utilization and energy efficiency improvement with energy and mass separation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 89(C), pages 135-150.
    4. Jaime Guerrero & Antonio Alcaide-Moreno & Ana González-Espinosa & Roberto Arévalo & Lev Tunkel & María Dolores Storch de Gracia & Eduardo García-Rosales, 2023. "Reducing Energy Consumption and CO 2 Emissions in Natural Gas Preheating Stations Using Vortex Tubes," Energies, MDPI, vol. 16(13), pages 1-20, June.
    5. Farzaneh-Gord, Mahmood & Sadi, Meisam, 2014. "Improving vortex tube performance based on vortex generator design," Energy, Elsevier, vol. 72(C), pages 492-500.
    6. Artem Belousov & Vladimir Lushpeev & Anton Sokolov & Radel Sultanbekov & Yan Tyan & Egor Ovchinnikov & Aleksei Shvets & Vitaliy Bushuev & Shamil Islamov, 2024. "Hartmann–Sprenger Energy Separation Effect for the Quasi-Isothermal Pressure Reduction of Natural Gas: Feasibility Analysis and Numerical Simulation," Energies, MDPI, vol. 17(9), pages 1-25, April.
    7. Subudhi, Sudhakar & Sen, Mihir, 2015. "Review of Ranque–Hilsch vortex tube experiments using air," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 172-178.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Farzaneh-Gord, Mahmood & Sadi, Meisam, 2014. "Improving vortex tube performance based on vortex generator design," Energy, Elsevier, vol. 72(C), pages 492-500.
    2. Rafiee, Seyed Ehsan & Rahimi, Masoud, 2013. "Experimental study and three-dimensional (3D) computational fluid dynamics (CFD) analysis on the effect of the convergence ratio, pressure inlet and number of nozzle intake on vortex tube performance–," Energy, Elsevier, vol. 63(C), pages 195-204.
    3. Zhang, Bo & Guo, Xiangji, 2018. "Prospective applications of Ranque–Hilsch vortex tubes to sustainable energy utilization and energy efficiency improvement with energy and mass separation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 89(C), pages 135-150.
    4. W. Rattanongphisat & S. B. Riffat & G. Gan, 2008. "Thermal separation flow characteristic in a vortex tube: CFD model," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 3(4), pages 282-295, October.
    5. Ambedkar, P. & Dutta, T., 2023. "CFD simulation and thermodynamic analysis of energy separation in vortex tube using different inert gases at different inlet pressures and cold mass fractions," Energy, Elsevier, vol. 263(PB).
    6. Manimaran, R., 2017. "Computational analysis of flow features and energy separation in a counter-flow vortex tube based on number of inlets," Energy, Elsevier, vol. 123(C), pages 564-578.
    7. Subudhi, Sudhakar & Sen, Mihir, 2015. "Review of Ranque–Hilsch vortex tube experiments using air," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 172-178.
    8. Zhang, Bo & Guo, Yaning & Li, Nian & He, Peng & Guo, Xiangji, 2023. "Experimental study of gas–liquid behavior in three-flow vortex tube with sintered metal porous material as the drain part," Energy, Elsevier, vol. 263(PA).
    9. Thakare, Hitesh R. & Parekh, A.D., 2015. "Computational analysis of energy separation in counter—flow vortex tube," Energy, Elsevier, vol. 85(C), pages 62-77.
    10. Aydın, Orhan & Baki, Muzaffer, 2006. "An experimental study on the design parameters of a counterflow vortex tube," Energy, Elsevier, vol. 31(14), pages 2763-2772.
    11. Manimaran, R., 2016. "Computational analysis of energy separation in a counter-flow vortex tube based on inlet shape and aspect ratio," Energy, Elsevier, vol. 107(C), pages 17-28.
    12. Im, S.Y. & Yu, S.S., 2012. "Effects of geometric parameters on the separated air flow temperature of a vortex tube for design optimization," Energy, Elsevier, vol. 37(1), pages 154-160.
    13. Kandil, Hamdy A. & Abdelghany, Seif T., 2015. "Computational investigation of different effects on the performance of the Ranque–Hilsch vortex tube," Energy, Elsevier, vol. 84(C), pages 207-218.
    14. Berber, Adnan & Dincer, Kevser & Yılmaz, Yusuf & Ozen, Dilek Nur, 2013. "Rule-based Mamdani-type fuzzy modeling of heating and cooling performances of counter-flow Ranque–Hilsch vortex tubes with different geometric construction for steel," Energy, Elsevier, vol. 51(C), pages 297-304.
    15. Artem Belousov & Vladimir Lushpeev & Anton Sokolov & Radel Sultanbekov & Yan Tyan & Egor Ovchinnikov & Aleksei Shvets & Vitaliy Bushuev & Shamil Islamov, 2024. "Hartmann–Sprenger Energy Separation Effect for the Quasi-Isothermal Pressure Reduction of Natural Gas: Feasibility Analysis and Numerical Simulation," Energies, MDPI, vol. 17(9), pages 1-25, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:12:y:2008:i:7:p:1822-1842. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.