Experimental study of gas–liquid behavior in three-flow vortex tube with sintered metal porous material as the drain part
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2022.125713
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Liang, Fachun & Wang, Chi & Tang, Guoxiang, 2020. "Experimental investigation on gas hydrate recovery using temperature separation mechanism of vortex tube," Energy, Elsevier, vol. 212(C).
- Jia, Guangxin & He, Beibei & Ma, Wenlin & Sun, Yifan, 2019. "Thermodynamic analysis based on simultaneous chemical and phase equilibrium for dehydration of glycerol with methanol," Energy, Elsevier, vol. 188(C).
- Zhang, Bo & Guo, Xiangji, 2018. "Prospective applications of Ranque–Hilsch vortex tubes to sustainable energy utilization and energy efficiency improvement with energy and mass separation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 89(C), pages 135-150.
- Thakare, Hitesh R. & Monde, Aniket & Parekh, Ashok D., 2015. "Experimental, computational and optimization studies of temperature separation and flow physics of vortex tube: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1043-1071.
- Bahadori, Alireza & Vuthaluru, Hari B., 2009. "Simple methodology for sizing of absorbers for TEG (triethylene glycol) gas dehydration systems," Energy, Elsevier, vol. 34(11), pages 1910-1916.
- Fan, Jingjing & Wang, Jianliang & Liu, Mingming & Sun, Wangmin & Lan, Zhixuan, 2022. "Scenario simulations of China's natural gas consumption under the dual-carbon target," Energy, Elsevier, vol. 252(C).
- Manimaran, R., 2017. "Computational analysis of flow features and energy separation in a counter-flow vortex tube based on number of inlets," Energy, Elsevier, vol. 123(C), pages 564-578.
- Aydın, Orhan & Baki, Muzaffer, 2006. "An experimental study on the design parameters of a counterflow vortex tube," Energy, Elsevier, vol. 31(14), pages 2763-2772.
- Wen, Chuang & Cao, Xuewen & Yang, Yan & Li, Wenlong, 2012. "Numerical simulation of natural gas flows in diffusers for supersonic separators," Energy, Elsevier, vol. 37(1), pages 195-200.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Zhang, Bo & Guo, Xiangji, 2018. "Prospective applications of Ranque–Hilsch vortex tubes to sustainable energy utilization and energy efficiency improvement with energy and mass separation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 89(C), pages 135-150.
- Ambedkar, P. & Dutta, T., 2023. "CFD simulation and thermodynamic analysis of energy separation in vortex tube using different inert gases at different inlet pressures and cold mass fractions," Energy, Elsevier, vol. 263(PB).
- Farzaneh-Gord, Mahmood & Sadi, Meisam, 2014. "Improving vortex tube performance based on vortex generator design," Energy, Elsevier, vol. 72(C), pages 492-500.
- Wang, Shiwei & Wang, Chao & Ding, Hongbing & Zhang, Yu & Dong, Yuanyuan & Wen, Chuang, 2023. "Joule-Thomson effect and flow behavior for energy-efficient dehydration of high-pressure natural gas in supersonic separator," Energy, Elsevier, vol. 279(C).
- Oberti, Raphaël & Lagrandeur, Junior & Poncet, Sébastien, 2023. "Numerical benchmark of a Ranque–Hilsch vortex tube working with subcritical carbon dioxide," Energy, Elsevier, vol. 263(PC).
- Yu, Binbin & Yang, Jingye & Wang, Dandong & Shi, Junye & Chen, Jiangping, 2019. "An updated review of recent advances on modified technologies in transcritical CO2 refrigeration cycle," Energy, Elsevier, vol. 189(C).
- Sun, Bo & Li, Mingzhe & Wang, Fan & Xie, Jingdong, 2023. "An incentive mechanism to promote residential renewable energy consumption in China's electricity retail market: A two-level Stackelberg game approach," Energy, Elsevier, vol. 269(C).
- Gunawan, Tubagus Aryandi & Luo, Hongxi & Greig, Chris & Larson, Eric, 2024. "Shared CO₂ capture, transport, and storage for decarbonizing industrial clusters," Applied Energy, Elsevier, vol. 359(C).
- Manimaran, R., 2017. "Computational analysis of flow features and energy separation in a counter-flow vortex tube based on number of inlets," Energy, Elsevier, vol. 123(C), pages 564-578.
- Subudhi, Sudhakar & Sen, Mihir, 2015. "Review of Ranque–Hilsch vortex tube experiments using air," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 172-178.
- Rafiee, Seyed Ehsan & Rahimi, Masoud, 2013. "Experimental study and three-dimensional (3D) computational fluid dynamics (CFD) analysis on the effect of the convergence ratio, pressure inlet and number of nozzle intake on vortex tube performance–," Energy, Elsevier, vol. 63(C), pages 195-204.
- Cao, Jiaojiao & Wu, Jiansong & Zhao, Yimeng & Cai, Jitao & Bai, Yiping & Pang, Lei, 2023. "Suppression effects of energy-absorbing materials on natural gas explosion in utility tunnels," Energy, Elsevier, vol. 281(C).
- Shahsavar, Amin & Jahangiri, Ali & Qatarani nejad, Amir & Ahmadi, Gholamreza & Karamzadeh dizaji, Alireza, 2022. "Energy and exergy analysis and multi-objective optimization of using combined vortex tube-photovoltaic/thermal system in city gate stations," Renewable Energy, Elsevier, vol. 196(C), pages 1017-1028.
- Zhang, Zhifei & Li, Tie & Shi, Weiquan, 2019. "Ambient Tracer-LIF for 2-D quantitative measurement of fuel concentration in gas jets," Energy, Elsevier, vol. 171(C), pages 372-384.
- Thakare, Hitesh R. & Parekh, A.D., 2015. "Computational analysis of energy separation in counter—flow vortex tube," Energy, Elsevier, vol. 85(C), pages 62-77.
- Wang, Mi & Liu, Jiegui & Bai, Yuxin & Zheng, Dandan & Fang, Lide, 2024. "Flow rate measurement of gas-liquid annular flow through a combined multimodal ultrasonic and differential pressure sensor," Energy, Elsevier, vol. 288(C).
- Yang, Tingru & Li, Hui & Zhang, Lingyue & Chen, Tianqi, 2022. "The impact of city gas on income inequality in China: A regional heterogeneity analysis," Energy Policy, Elsevier, vol. 169(C).
- Manimaran, R., 2016. "Computational analysis of energy separation in a counter-flow vortex tube based on inlet shape and aspect ratio," Energy, Elsevier, vol. 107(C), pages 17-28.
- Bian, Jiang & Cao, Xuewen & Yang, Wen & Edem, Mawugbe Ayivi & Yin, Pengbo & Jiang, Wenming, 2018. "Supersonic liquefaction properties of natural gas in the Laval nozzle," Energy, Elsevier, vol. 159(C), pages 706-715.
- Bahadori, Alireza & Vuthaluru, Hari B., 2010. "Simple equations to correlate theoretical stages and operating reflux in fractionators," Energy, Elsevier, vol. 35(3), pages 1439-1446.
More about this item
Keywords
Three-flow vortex tube; Gas–liquid behavior; Sintered porous metal material; Dehydration; Heat and mass transfer;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:263:y:2023:i:pa:s0360544222025993. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.